Restructuring of Hoeffding Trees for Trapezoidal Data Streams

Christian Schreckenberger, Tim Glockner, H. Stuckenschmidt, Christian Bartelt
{"title":"Restructuring of Hoeffding Trees for Trapezoidal Data Streams","authors":"Christian Schreckenberger, Tim Glockner, H. Stuckenschmidt, Christian Bartelt","doi":"10.1109/ICDMW51313.2020.00064","DOIUrl":null,"url":null,"abstract":"Trapezoidal Data Streams are an emerging topic, where not only the data volume increases, but also the data dimension, i.e. new features emerge. In this paper, we address the challenges that arise from this problem by providing a novel approach to restructure and prune Hoeffding trees. We evaluate our approach on synthetic datasets, where we can show that the approach significantly improves the performance compared to the baseline of an adjusted Hoeffding tree algorithm without restructuring and pruning.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Trapezoidal Data Streams are an emerging topic, where not only the data volume increases, but also the data dimension, i.e. new features emerge. In this paper, we address the challenges that arise from this problem by providing a novel approach to restructure and prune Hoeffding trees. We evaluate our approach on synthetic datasets, where we can show that the approach significantly improves the performance compared to the baseline of an adjusted Hoeffding tree algorithm without restructuring and pruning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
梯形数据流Hoeffding树的重构
梯形数据流是一个新兴的话题,它不仅增加了数据量,而且增加了数据维度,即出现了新的特征。在本文中,我们通过提供一种重组和修剪Hoeffding树的新方法来解决这个问题所带来的挑战。我们在合成数据集上评估了我们的方法,在那里我们可以证明,与调整后的Hoeffding树算法的基线相比,该方法在没有重组和修剪的情况下显着提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Data by Principal Component Analysis Deep Contextualized Word Embedding for Text-based Online User Profiling to Detect Social Bots on Twitter Integration of Fuzzy and Deep Learning in Three-Way Decisions Mining Heterogeneous Data for Formulation Design Restructuring of Hoeffding Trees for Trapezoidal Data Streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1