Learning suite of kernel feature spaces enhances SMR-based EEG-BCI classification

B. Abibullaev
{"title":"Learning suite of kernel feature spaces enhances SMR-based EEG-BCI classification","authors":"B. Abibullaev","doi":"10.1109/IWW-BCI.2017.7858158","DOIUrl":null,"url":null,"abstract":"Brain-Computer Interface (BCI) research hopes to improve the quality of life for people with severe motor disabilities by providing a capability to control external devices using their thoughts. To control a device through BCI, neural signals of a user must be translated to meaningful control commands using various machine learning components, e.g. feature extraction, dimensionality reduction and classification, that should also be carefully designed for practical use. However, the noise and variability in the neural data pose one of the greatest challenges that in practice previously functioning BCI fails in the subsequent operation requiring re-tuning/optimization. This paper presents an idea of defining multiple feature spaces and optimal decision boundaries therein to account for noise and variability in data and improve a generalization of a learning machine. The spaces are defined in the Reproducing Kernel Hilbert Spaces induced by a Radial Basis Gaussian function. Then the learning is done via L1-regularized Support Vector Machines. The central idea behind our approach is that a classifier predicts an unseen test examples by learning more rich feature spaces with a suite of optimal hyperparameters. Empirical evaluation have shown an improved generalization performance (range 79–90%) on two class motor imagery Electroencephalography (EEG) data, when compared with other conventional machine learning methods.","PeriodicalId":443427,"journal":{"name":"2017 5th International Winter Conference on Brain-Computer Interface (BCI)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2017.7858158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Brain-Computer Interface (BCI) research hopes to improve the quality of life for people with severe motor disabilities by providing a capability to control external devices using their thoughts. To control a device through BCI, neural signals of a user must be translated to meaningful control commands using various machine learning components, e.g. feature extraction, dimensionality reduction and classification, that should also be carefully designed for practical use. However, the noise and variability in the neural data pose one of the greatest challenges that in practice previously functioning BCI fails in the subsequent operation requiring re-tuning/optimization. This paper presents an idea of defining multiple feature spaces and optimal decision boundaries therein to account for noise and variability in data and improve a generalization of a learning machine. The spaces are defined in the Reproducing Kernel Hilbert Spaces induced by a Radial Basis Gaussian function. Then the learning is done via L1-regularized Support Vector Machines. The central idea behind our approach is that a classifier predicts an unseen test examples by learning more rich feature spaces with a suite of optimal hyperparameters. Empirical evaluation have shown an improved generalization performance (range 79–90%) on two class motor imagery Electroencephalography (EEG) data, when compared with other conventional machine learning methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核特征空间学习套件增强了基于smr的EEG-BCI分类
脑机接口(BCI)研究希望通过提供一种用思想控制外部设备的能力,来改善严重运动障碍患者的生活质量。为了通过BCI控制设备,必须使用各种机器学习组件(例如特征提取、降维和分类)将用户的神经信号转换为有意义的控制命令,这些组件也应该精心设计以供实际使用。然而,神经数据中的噪声和可变性构成了实践中最大的挑战之一,即先前功能良好的BCI在后续操作中失败,需要重新调整/优化。本文提出了在其中定义多个特征空间和最优决策边界的思想,以考虑数据中的噪声和可变性,并提高学习机的泛化能力。该空间定义在由径向基高斯函数导出的再现核希尔伯特空间中。然后通过l1正则化支持向量机完成学习。我们的方法背后的中心思想是,分类器通过学习更丰富的特征空间和一组最优超参数来预测未见过的测试示例。经验评估表明,与其他传统机器学习方法相比,两类运动图像脑电图(EEG)数据的泛化性能有所提高(范围为79-90%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bimanual Arm Movements Decoding using Hybrid Method Single-trial analysis of readiness potentials for lower limb exoskeleton control Towards a whole body brain-machine interface system for decoding expressive movement intent Challenges and Opportunities Design and evaluation of a P300-ERP based BCI system for real-time control of a mobile robot A brain-computer interface speller using peripheral stimulus-based SSVEP and P300
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1