E. Macchia, M. Ghittorelli, F. Torricelli, L. Torsi
{"title":"Organic electrochemical transistor immuno-sensor operating at the femto-molar limit of detection","authors":"E. Macchia, M. Ghittorelli, F. Torricelli, L. Torsi","doi":"10.1109/IWASI.2017.7974217","DOIUrl":null,"url":null,"abstract":"The interfacing of biomaterials to electronic devices is one of the most challenging research fields that has relevance to both fundamental studies and the development of highly performing biosensors. Organic Electrochemical transistors, using an aqueous electrolyte solution, offer a unique set of advantages in the development of biosensor devices. In this paper, we report highly selective organic electrochemical transistor based immune-sensor by modifying the gate electrode with polyclonal anti-human Immunoglobulin G (anti-IgG) antibodies. Extremely low detection of Immunoglobulin G (IgG) at the femto-molar detection limit has been achieved.","PeriodicalId":332606,"journal":{"name":"2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWASI.2017.7974217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The interfacing of biomaterials to electronic devices is one of the most challenging research fields that has relevance to both fundamental studies and the development of highly performing biosensors. Organic Electrochemical transistors, using an aqueous electrolyte solution, offer a unique set of advantages in the development of biosensor devices. In this paper, we report highly selective organic electrochemical transistor based immune-sensor by modifying the gate electrode with polyclonal anti-human Immunoglobulin G (anti-IgG) antibodies. Extremely low detection of Immunoglobulin G (IgG) at the femto-molar detection limit has been achieved.