{"title":"Image Retrieval Based on Fuzzy Color Semantics","authors":"Qingyong Li, Zhiping Shi, Siwei Luo","doi":"10.1109/FUZZY.2007.4295404","DOIUrl":null,"url":null,"abstract":"In order to improve the performance of content-based image retrieval (CBIR) systems, the 'semantic gap' between the low-level visual features and the high-level semantic features attracts more and more research interest. We propose an approach to describe and to extract the fuzzy color semantics. According to human color perception model, we utilize the linguistic variable to describe the image color semantics, so it becomes possible to depict the image in linguistic expression such as mostly red. Furthermore, we apply the feedforward neural network to model the vagueness of human color perception and to extract the fuzzy semantic feature vector. Our experiments show that the color semantic features have good accordance with the human perception, and also have good retrieval performance. In some extent, our approach shows the potential to reduce the semantic gap in CBIR.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In order to improve the performance of content-based image retrieval (CBIR) systems, the 'semantic gap' between the low-level visual features and the high-level semantic features attracts more and more research interest. We propose an approach to describe and to extract the fuzzy color semantics. According to human color perception model, we utilize the linguistic variable to describe the image color semantics, so it becomes possible to depict the image in linguistic expression such as mostly red. Furthermore, we apply the feedforward neural network to model the vagueness of human color perception and to extract the fuzzy semantic feature vector. Our experiments show that the color semantic features have good accordance with the human perception, and also have good retrieval performance. In some extent, our approach shows the potential to reduce the semantic gap in CBIR.