Image Retrieval Based on Fuzzy Color Semantics

Qingyong Li, Zhiping Shi, Siwei Luo
{"title":"Image Retrieval Based on Fuzzy Color Semantics","authors":"Qingyong Li, Zhiping Shi, Siwei Luo","doi":"10.1109/FUZZY.2007.4295404","DOIUrl":null,"url":null,"abstract":"In order to improve the performance of content-based image retrieval (CBIR) systems, the 'semantic gap' between the low-level visual features and the high-level semantic features attracts more and more research interest. We propose an approach to describe and to extract the fuzzy color semantics. According to human color perception model, we utilize the linguistic variable to describe the image color semantics, so it becomes possible to depict the image in linguistic expression such as mostly red. Furthermore, we apply the feedforward neural network to model the vagueness of human color perception and to extract the fuzzy semantic feature vector. Our experiments show that the color semantic features have good accordance with the human perception, and also have good retrieval performance. In some extent, our approach shows the potential to reduce the semantic gap in CBIR.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In order to improve the performance of content-based image retrieval (CBIR) systems, the 'semantic gap' between the low-level visual features and the high-level semantic features attracts more and more research interest. We propose an approach to describe and to extract the fuzzy color semantics. According to human color perception model, we utilize the linguistic variable to describe the image color semantics, so it becomes possible to depict the image in linguistic expression such as mostly red. Furthermore, we apply the feedforward neural network to model the vagueness of human color perception and to extract the fuzzy semantic feature vector. Our experiments show that the color semantic features have good accordance with the human perception, and also have good retrieval performance. In some extent, our approach shows the potential to reduce the semantic gap in CBIR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊颜色语义的图像检索
为了提高基于内容的图像检索(CBIR)系统的性能,低级视觉特征与高级语义特征之间的“语义差距”问题越来越受到人们的关注。提出了一种描述和提取模糊颜色语义的方法。根据人类色彩感知模型,我们利用语言变量来描述图像的颜色语义,因此可以用语言表达来描述图像,例如大部分是红色。在此基础上,应用前馈神经网络对人类色彩感知的模糊性进行建模,提取模糊语义特征向量。我们的实验表明,颜色语义特征与人类感知有很好的一致性,并且具有很好的检索性能。在某种程度上,我们的方法显示了减少CBIR语义差距的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microcalcification Detection in Mammograms Using Interval Type-2 Fuzzy Logic System System of fuzzy relation equations with sup-* composition in semi-linear spaces: minimal solutions Parallel Type-2 Fuzzy Logic Co-Processors for Engine Management Robust H∞ Filtering for Fuzzy Time-Delay Systems Neural Networks for Author Attribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1