Microcalcification Detection in Mammograms Using Interval Type-2 Fuzzy Logic System

Suraphon Chumklin, S. Auephanwiriyakul, N. Theera-Umpon
{"title":"Microcalcification Detection in Mammograms Using Interval Type-2 Fuzzy Logic System","authors":"Suraphon Chumklin, S. Auephanwiriyakul, N. Theera-Umpon","doi":"10.1109/FUZZY.2010.5584896","DOIUrl":null,"url":null,"abstract":"Breast cancer is an important deleterious disease. Mortality rate from this cancer is effectively high and rapidly increasing. The detection at the earlier state can help to reduce the mortality rate. In this paper, we develop a system that helps radiologists to detect microcalcification in mammograms. In particular, we apply the interval type-2 fuzzy logic system with four features, i.e., B-descriptor, D-descriptor, average intensity inside boundary, and intensity difference between inside and outside boundaries. We also compare the result with the result from a type-1 Mamdani fuzzy inference system with the same set of features. The result from the type-1 fuzzy logic system yields 87.95% correct classification with 11.33 false positives per image whereas interval type-2 fuzzy logic system provides 90.36% correct classification with only 4.73 false positives per image.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Breast cancer is an important deleterious disease. Mortality rate from this cancer is effectively high and rapidly increasing. The detection at the earlier state can help to reduce the mortality rate. In this paper, we develop a system that helps radiologists to detect microcalcification in mammograms. In particular, we apply the interval type-2 fuzzy logic system with four features, i.e., B-descriptor, D-descriptor, average intensity inside boundary, and intensity difference between inside and outside boundaries. We also compare the result with the result from a type-1 Mamdani fuzzy inference system with the same set of features. The result from the type-1 fuzzy logic system yields 87.95% correct classification with 11.33 false positives per image whereas interval type-2 fuzzy logic system provides 90.36% correct classification with only 4.73 false positives per image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
区间2型模糊逻辑系统在乳房x线微钙化检测中的应用
乳腺癌是一种重要的有害疾病。这种癌症的死亡率实际上很高,而且还在迅速上升。早期发现有助于降低死亡率。在本文中,我们开发了一个系统,帮助放射科医生在乳房x光检查中检测微钙化。特别地,我们应用了具有4个特征的区间2型模糊逻辑系统,即b -描述子、d -描述子、边界内平均强度和边界内外强度差。我们还将结果与具有相同特征集的1型Mamdani模糊推理系统的结果进行了比较。区间1型模糊逻辑系统的分类正确率为87.95%,每幅图像有11.33个假阳性,而区间2型模糊逻辑系统的分类正确率为90.36%,每幅图像只有4.73个假阳性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microcalcification Detection in Mammograms Using Interval Type-2 Fuzzy Logic System System of fuzzy relation equations with sup-* composition in semi-linear spaces: minimal solutions Parallel Type-2 Fuzzy Logic Co-Processors for Engine Management Robust H∞ Filtering for Fuzzy Time-Delay Systems Neural Networks for Author Attribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1