A Comparative Study of Different CNN Encoders for Monocular Depth Prediction

Mohamed Aladem, Sumanth Chennupati, Zaid A. El-Shair, S. Rawashdeh
{"title":"A Comparative Study of Different CNN Encoders for Monocular Depth Prediction","authors":"Mohamed Aladem, Sumanth Chennupati, Zaid A. El-Shair, S. Rawashdeh","doi":"10.1109/NAECON46414.2019.9057857","DOIUrl":null,"url":null,"abstract":"Depth estimation of an observed scene is an important task for many domains such as mobile robotics, autonomous driving, and augmented reality. Traditionally, specialized sensors such as stereo cameras and structured light (RGB-D) ones are used to obtain depth along with color information of the environment. However, extending typical monocular cameras with the ability to infer depth information is an attractive solution. In this paper, we will demonstrate a Convolutional Neural Network (CNN) in an encoder-decoder architecture to perform monocular depth prediction. Additionally, we will evaluate and compare different CNN encoders’ performance.","PeriodicalId":193529,"journal":{"name":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON46414.2019.9057857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Depth estimation of an observed scene is an important task for many domains such as mobile robotics, autonomous driving, and augmented reality. Traditionally, specialized sensors such as stereo cameras and structured light (RGB-D) ones are used to obtain depth along with color information of the environment. However, extending typical monocular cameras with the ability to infer depth information is an attractive solution. In this paper, we will demonstrate a Convolutional Neural Network (CNN) in an encoder-decoder architecture to perform monocular depth prediction. Additionally, we will evaluate and compare different CNN encoders’ performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同CNN编码器用于单目深度预测的比较研究
在移动机器人、自动驾驶和增强现实等许多领域,对观察场景的深度估计是一项重要的任务。传统上,专门的传感器,如立体摄像机和结构光(RGB-D)被用来获取深度和环境的颜色信息。然而,扩展典型的单目相机,使其具有推断深度信息的能力是一个有吸引力的解决方案。在本文中,我们将演示卷积神经网络(CNN)在编码器-解码器架构中执行单目深度预测。此外,我们将评估和比较不同的CNN编码器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physical Cyber-Security of SCADA Systems Cluster-Based Hungarian Approach to Task Allocation for Unmanned Aerial Vehicles Privacy Preserving Medium Access Control Protocol for wireless Body Area Sensor Networks Gaussian Beam Propagation Through Turbulent Atmosphere using Second-Order Split-Step Algorithm A generalized equivalent circuit model for large-scale battery packs with cell-to-cell variation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1