Thermal resistance modeling of back-end interconnect and intrinsic FinFETs, and transient simulation of inverters with capacitive loading effects

Jhih-Yang Yan, Sun-Rong Jan, Yu-Jiun Peng, H. H. Lin, W. K. Wan, Y.-H. Huang, B. Hung, K.T. Chan, Michael Huang, M. Yang, C. Liu
{"title":"Thermal resistance modeling of back-end interconnect and intrinsic FinFETs, and transient simulation of inverters with capacitive loading effects","authors":"Jhih-Yang Yan, Sun-Rong Jan, Yu-Jiun Peng, H. H. Lin, W. K. Wan, Y.-H. Huang, B. Hung, K.T. Chan, Michael Huang, M. Yang, C. Liu","doi":"10.1109/IEDM.2016.7838550","DOIUrl":null,"url":null,"abstract":"A two-step pseudo isothermal plane model is used to calculate the thermal resistance of BEOL (Rth, beol). The intrinsic thermal resistances of 14nm FinFETs (Rth0, Device) are extracted with face-up (conventional measurement, heat flow from the channel to substrate) and face-down (flip-chip, heat flow from the channel to metal contact) configurations. Since the free convection of air has a large thermal resistance, the heat flow direction affects Rth0, Device. The face-up Rth0, Device is higher than face-down Rth0, Device. This is more significant for multi-finger FinFETs. The volume of hot spot affects the cooling time. In an inverter, the maximum temperature (Tmax) of pFET is higher than nFET due to the low thermal conductivity of SiGe S/D. Tmax and the high temperature duration can be controlled by the current and output capacitive loading of the inverter. The residual temperature in the channel and the temperatures of M1 layer are found too low to reflect the real device temperature, which may lead to an underestimation of device temperature with transient AC input.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

A two-step pseudo isothermal plane model is used to calculate the thermal resistance of BEOL (Rth, beol). The intrinsic thermal resistances of 14nm FinFETs (Rth0, Device) are extracted with face-up (conventional measurement, heat flow from the channel to substrate) and face-down (flip-chip, heat flow from the channel to metal contact) configurations. Since the free convection of air has a large thermal resistance, the heat flow direction affects Rth0, Device. The face-up Rth0, Device is higher than face-down Rth0, Device. This is more significant for multi-finger FinFETs. The volume of hot spot affects the cooling time. In an inverter, the maximum temperature (Tmax) of pFET is higher than nFET due to the low thermal conductivity of SiGe S/D. Tmax and the high temperature duration can be controlled by the current and output capacitive loading of the inverter. The residual temperature in the channel and the temperatures of M1 layer are found too low to reflect the real device temperature, which may lead to an underestimation of device temperature with transient AC input.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
后端互连和本征finfet的热阻建模,以及电容负载效应逆变器的瞬态仿真
采用两步拟等温平面模型计算了BEOL (Rth, BEOL)的热阻。14nm finfet (Rth0, Device)的固有热阻采用面朝上(传统测量,热流从通道到衬底)和面朝下(倒装芯片,热流从通道到金属触点)配置提取。由于空气的自由对流具有较大的热阻,因此热流方向影响Rth0, Device。正面朝上的Rth0, Device高于正面朝下的Rth0, Device。这对于多指finfet来说更为重要。热点的体积影响冷却时间。在逆变器中,由于SiGe S/D的导热系数低,pet的最高温度(Tmax)高于net。Tmax和高温持续时间可以通过逆变器的电流和输出容性负载来控制。通道内的残余温度和M1层的温度过低,无法反映器件的实际温度,这可能导致瞬态交流输入下器件温度的低估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SOI technology for quantum information processing Sustainable electronics for nano-spacecraft in deep space missions Current status and challenges of the modeling of organic photodiodes and solar cells Triboelectric energy harvester with an ultra-thin tribo-dielectric layer by initiated CVD and investigation of underlying physics in the triboelectricity 256×256, 100kfps, 61% Fill-factor time-resolved SPAD image sensor for microscopy applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1