Supervised dictionary learning for action localization

B. V. Kumar, I. Patras
{"title":"Supervised dictionary learning for action localization","authors":"B. V. Kumar, I. Patras","doi":"10.1109/FG.2013.6553745","DOIUrl":null,"url":null,"abstract":"Most of the existing methods that adopt the Implicit Shape Model (ISM) for action localization learn the dictionary (codebook) in an unsupervised manner. In contrast to this, we present a supervised approach to learn a dictionary for action localization. We follow a Hough voting approach for action detection in which the spatio-temporal descriptors extracted from the videos vote for the spatio-temporal location and temporal extent of the action. We propose a framework that enables the incorporation of the localization information into the dictionary learning. More specifically we use the spatial center and temporal extent of the training sequences to learn a discriminative dictionary that maximizes the votes at the spatio-temporal center and extend of the action and minimizes the votes at the background. The above formulation results in a non-convex objective function which we minimize using alternating optimization algorithm. We demonstrate the performance of the algorithm on two publicly available action datasets where we show that the proposed method performs better than the state-of-the-art methods.","PeriodicalId":255121,"journal":{"name":"2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FG.2013.6553745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Most of the existing methods that adopt the Implicit Shape Model (ISM) for action localization learn the dictionary (codebook) in an unsupervised manner. In contrast to this, we present a supervised approach to learn a dictionary for action localization. We follow a Hough voting approach for action detection in which the spatio-temporal descriptors extracted from the videos vote for the spatio-temporal location and temporal extent of the action. We propose a framework that enables the incorporation of the localization information into the dictionary learning. More specifically we use the spatial center and temporal extent of the training sequences to learn a discriminative dictionary that maximizes the votes at the spatio-temporal center and extend of the action and minimizes the votes at the background. The above formulation results in a non-convex objective function which we minimize using alternating optimization algorithm. We demonstrate the performance of the algorithm on two publicly available action datasets where we show that the proposed method performs better than the state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于动作定位的监督字典学习
现有的动作定位方法大多采用隐式形状模型(ISM),以无监督的方式学习字典(码本)。与此相反,我们提出了一种有监督的方法来学习用于动作定位的字典。我们采用霍夫投票方法进行动作检测,其中从视频中提取的时空描述符投票决定动作的时空位置和时间范围。我们提出了一个能够将定位信息整合到字典学习中的框架。更具体地说,我们使用训练序列的空间中心和时间范围来学习一个判别字典,该字典在时空中心和动作的延伸处最大化投票,并在背景处最小化投票。上述公式得到一个非凸目标函数,我们使用交替优化算法最小化该目标函数。我们在两个公开可用的动作数据集上演示了该算法的性能,其中我们表明所提出的方法比最先进的方法性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The temporal connection between smiles and blinks Relative dense tracklets for human action recognition Early facial expression recognition using early RankBoost Countermeasure for the protection of face recognition systems against mask attacks Supervised dictionary learning for action localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1