{"title":"Disentangled Representations and Hierarchical Refinement of Multi-Granularity Features for Text-to-Image Synthesis","authors":"Pei Dong, L. Wu, Lei Meng, Xiangxu Meng","doi":"10.1145/3512527.3531389","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on generating photo-realistic images from given text descriptions. Current methods first generate an initial image and then progressively refine it to a high-resolution one. These methods typically indiscriminately refine all granularity features output from the previous stage. However, the ability to express different granularity features in each stage is not consistent, and it is difficult to express precise semantics by further refining the features with poor quality generated in the previous stage. Current methods cannot refine different granularity features independently, resulting in that it is challenging to clearly express all factors of semantics in generated image, and some features even become worse. To address this issue, we propose a Hierarchical Disentangled Representations Generative Adversarial Networks (HDR-GAN) to generate photo-realistic images by explicitly disentangling and individually modeling the factors of semantics in the image. HDR-GAN introduces a novel component called multi-granularity feature disentangled encoder to represent image information comprehensively through explicitly disentangling multi-granularity features including pose, shape and texture. Moreover, we develop a novel Multi-granularity Feature Refinement (MFR) containing a Coarse-grained Feature Refinement (CFR) model and a Fine-grained Feature Refinement (FFR) model. CFR utilizes coarse-grained disentangled representations (e.g., pose and shape) to clarify category information, while FFR employs fine-grained disentangled representations (e.g., texture) to reflect instance-level details. Extensive experiments on two well-studied and publicly available datasets (i.e., CUB-200 and CLEVR-SV) demonstrate the rationality and superiority of our method.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, we focus on generating photo-realistic images from given text descriptions. Current methods first generate an initial image and then progressively refine it to a high-resolution one. These methods typically indiscriminately refine all granularity features output from the previous stage. However, the ability to express different granularity features in each stage is not consistent, and it is difficult to express precise semantics by further refining the features with poor quality generated in the previous stage. Current methods cannot refine different granularity features independently, resulting in that it is challenging to clearly express all factors of semantics in generated image, and some features even become worse. To address this issue, we propose a Hierarchical Disentangled Representations Generative Adversarial Networks (HDR-GAN) to generate photo-realistic images by explicitly disentangling and individually modeling the factors of semantics in the image. HDR-GAN introduces a novel component called multi-granularity feature disentangled encoder to represent image information comprehensively through explicitly disentangling multi-granularity features including pose, shape and texture. Moreover, we develop a novel Multi-granularity Feature Refinement (MFR) containing a Coarse-grained Feature Refinement (CFR) model and a Fine-grained Feature Refinement (FFR) model. CFR utilizes coarse-grained disentangled representations (e.g., pose and shape) to clarify category information, while FFR employs fine-grained disentangled representations (e.g., texture) to reflect instance-level details. Extensive experiments on two well-studied and publicly available datasets (i.e., CUB-200 and CLEVR-SV) demonstrate the rationality and superiority of our method.