Piecewise-Polynomial Function Evaluation in 3-D Graphics- Artificial Intelligence based New Digital Multiplier

M. Renuka, G. Valantina
{"title":"Piecewise-Polynomial Function Evaluation in 3-D Graphics- Artificial Intelligence based New Digital Multiplier","authors":"M. Renuka, G. Valantina","doi":"10.1109/ICCSP48568.2020.9182208","DOIUrl":null,"url":null,"abstract":"An Artificial Intelligence based Novel dual-channel multiplier (AINDCM) for the area and power-efficient second-order piecewise- polynomial function evaluation for three-dimensional graphics applications is presented in this paper. In any multiplier, the working of the estimation method is highly dependent on the type of adder structure. Different hardware structures of adders and their implementations are presented. The proposed multipliers overcome the drawbacks of conventional DCM multiplier using Parallel Prefix adders which decrease the hardware difficulty. The proposed scheme performs complex methods with a power- efficient and area-efficient approach. The prefix adders reduce the hardware computational effort in the piecewise polynomial approximation with uniform or non-uniform segmentation. These units accomplish the low power consumption compared to CPA with large input word size. The parameters area, delay, and power will be analyzed and compared.","PeriodicalId":321133,"journal":{"name":"2020 International Conference on Communication and Signal Processing (ICCSP)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Communication and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP48568.2020.9182208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An Artificial Intelligence based Novel dual-channel multiplier (AINDCM) for the area and power-efficient second-order piecewise- polynomial function evaluation for three-dimensional graphics applications is presented in this paper. In any multiplier, the working of the estimation method is highly dependent on the type of adder structure. Different hardware structures of adders and their implementations are presented. The proposed multipliers overcome the drawbacks of conventional DCM multiplier using Parallel Prefix adders which decrease the hardware difficulty. The proposed scheme performs complex methods with a power- efficient and area-efficient approach. The prefix adders reduce the hardware computational effort in the piecewise polynomial approximation with uniform or non-uniform segmentation. These units accomplish the low power consumption compared to CPA with large input word size. The parameters area, delay, and power will be analyzed and compared.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维图形中的分段多项式函数评估——基于人工智能的新型数字乘法器
本文提出了一种基于人工智能的新型双通道乘法器(AINDCM),用于三维图形应用中面积和功耗的二阶分段多项式函数评估。在任何乘法器中,估计方法的工作高度依赖于加法器结构的类型。介绍了各种加法器的硬件结构及其实现方法。该乘法器克服了传统DCM乘法器使用并行前缀加法器的缺点,降低了硬件难度。该方案以低功耗和低面积的方法来执行复杂的方法。前缀加法器减少了均匀或非均匀分割的分段多项式近似的硬件计算量。与大输入字长的CPA相比,这些单元实现了低功耗。并对其面积、时延、功耗等参数进行了分析比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acoustic Scene Classification in Hearing aid using Deep Learning Plant Disease Detection and Recognition using K means Clustering THD Reduction in Execution of A Nine Level Single Phase Inverter Analysis of Heel Fissure Therapy using Thermal Imaging and Image Processing Malicious Application Detection in Android using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1