Improving Detection of Malicious Office Documents Using One-Side Classifiers

S. Vitel, Gheorghe Balan, Dumitru-Bogdan Prelipcean
{"title":"Improving Detection of Malicious Office Documents Using One-Side Classifiers","authors":"S. Vitel, Gheorghe Balan, Dumitru-Bogdan Prelipcean","doi":"10.1109/SYNASC49474.2019.00041","DOIUrl":null,"url":null,"abstract":"The current threat landscape is diverse and has lately been shifting from the binary executable application to a more light-coded and data-oriented approach. Considering this, the use of Microsoft Office documents in attacks has increased. The number of malicious samples is high and the complexity of evasion techniques is also challenging. The VBA macros are highly used in enterprise environments with benign purposes, so, in terms of detection, the number of false alarms should be close to zero. In this paper we discuss and propose a solution which focuses on keeping the rate of false positives as low as possible and, at the same time, maximizes the detection rate.","PeriodicalId":102054,"journal":{"name":"2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC49474.2019.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The current threat landscape is diverse and has lately been shifting from the binary executable application to a more light-coded and data-oriented approach. Considering this, the use of Microsoft Office documents in attacks has increased. The number of malicious samples is high and the complexity of evasion techniques is also challenging. The VBA macros are highly used in enterprise environments with benign purposes, so, in terms of detection, the number of false alarms should be close to zero. In this paper we discuss and propose a solution which focuses on keeping the rate of false positives as low as possible and, at the same time, maximizes the detection rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用单侧分类器改进恶意办公文档的检测
当前的威胁形势是多种多样的,最近已经从二进制可执行应用程序转向更轻编码和面向数据的方法。考虑到这一点,在攻击中使用Microsoft Office文档的情况有所增加。恶意样本的数量很高,规避技术的复杂性也很具有挑战性。VBA宏在企业环境中被广泛用于良性目的,因此,就检测而言,假警报的数量应该接近于零。在本文中,我们讨论并提出了一个解决方案,其重点是保持假阳性率尽可能低,同时,最大限度地提高检出率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Superposition Reasoning about Quantified Bitvector Formulas Improving Detection of Malicious Office Documents Using One-Side Classifiers An Attempt to Enhance Buchberger's Algorithm by Using Remainder Sequences and GCD Operation Multi-Control Virtual Reality Driving Simulator [Title page iii]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1