M. Jung, C. Trum, Beate Schmidbauer, E. Willenborg, R. Rascher
{"title":"Non-ablative removal of sub surface damages in grinded optical glass substrates by controlled melting of thin surface layers using CO2-laser radiation","authors":"M. Jung, C. Trum, Beate Schmidbauer, E. Willenborg, R. Rascher","doi":"10.1117/12.2564801","DOIUrl":null,"url":null,"abstract":"The form generation of optical surfaces by grinding and mechanical polishing results in small sub surface damages in the form of micro cracks that conventionally have to be removed by further removal of the damaged surface layers. In order to reduce process time and material cost non-ablative methods for removal of micro cracks are desired. Utilising the low optical penetration depths of less than 10 μm for CO2-laser radiation in glass, the laser energy can be used to heat up and melt thin surface layers. Using a 1.5 kW CO2-laser, a quasi-line focus formed by a scanner unit and a constant feed speed, it is possible to close all micro cracks present in the rough grinded test surfaces (max. SSD-depth ~ 63 μm), while achieving a process time of less than 2 seconds for a Ø 30 mm N-BK7 lens, respectively 7.5 seconds for fused silica. With a Sa as low as 50 nm and low distortion from the original shape the surfaces can directly be conventionally polished, further reducing the process chain complexity.","PeriodicalId":422212,"journal":{"name":"Precision Optics Manufacturing","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Optics Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2564801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The form generation of optical surfaces by grinding and mechanical polishing results in small sub surface damages in the form of micro cracks that conventionally have to be removed by further removal of the damaged surface layers. In order to reduce process time and material cost non-ablative methods for removal of micro cracks are desired. Utilising the low optical penetration depths of less than 10 μm for CO2-laser radiation in glass, the laser energy can be used to heat up and melt thin surface layers. Using a 1.5 kW CO2-laser, a quasi-line focus formed by a scanner unit and a constant feed speed, it is possible to close all micro cracks present in the rough grinded test surfaces (max. SSD-depth ~ 63 μm), while achieving a process time of less than 2 seconds for a Ø 30 mm N-BK7 lens, respectively 7.5 seconds for fused silica. With a Sa as low as 50 nm and low distortion from the original shape the surfaces can directly be conventionally polished, further reducing the process chain complexity.