Saiping Zhang, Luge Wang, Xionghui Mao, Fuzheng Yang, Shuai Wan
{"title":"Rate Controllable Learned Image Compression Based on RFL Model","authors":"Saiping Zhang, Luge Wang, Xionghui Mao, Fuzheng Yang, Shuai Wan","doi":"10.1109/VCIP56404.2022.10008802","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a rate controllable image compression framework, Rate Controllable Variational Autoencoder (RC-VAE), based on the Rate-Feature-Level (RFL) model established through our exploration on the correlation among target rates, image features and quantization levels. Considering that, when meeting the same target rate, different images should be quantized in different levels, we focus on jointly utilizing the target rate and the extracted features of the image to predict the corresponding quantization level and propose the RFL model. Combining the proposed RFL model with a Hyperprior Continuously Variable Rate (HCVR) image compression network, we further propose the RC-VAE. By controlling information loss in quantization process, the RC-VAE can work at the target rate. Experimental results have demonstrated that one single RC-VAE model can adapt to multiple target rates with higher rate control accuracy and better R-D performance compared with the state-of-the-art rate controllable Image compression networks.","PeriodicalId":269379,"journal":{"name":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP56404.2022.10008802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a rate controllable image compression framework, Rate Controllable Variational Autoencoder (RC-VAE), based on the Rate-Feature-Level (RFL) model established through our exploration on the correlation among target rates, image features and quantization levels. Considering that, when meeting the same target rate, different images should be quantized in different levels, we focus on jointly utilizing the target rate and the extracted features of the image to predict the corresponding quantization level and propose the RFL model. Combining the proposed RFL model with a Hyperprior Continuously Variable Rate (HCVR) image compression network, we further propose the RC-VAE. By controlling information loss in quantization process, the RC-VAE can work at the target rate. Experimental results have demonstrated that one single RC-VAE model can adapt to multiple target rates with higher rate control accuracy and better R-D performance compared with the state-of-the-art rate controllable Image compression networks.