Crack Segmentation for Low-Resolution Images using Joint Learning with Super- Resolution

Yuki Kondo, N. Ukita
{"title":"Crack Segmentation for Low-Resolution Images using Joint Learning with Super- Resolution","authors":"Yuki Kondo, N. Ukita","doi":"10.23919/MVA51890.2021.9511400","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for crack segmentation on low-resolution images. Detailed cracks on their high-resolution images are estimated by super resolution from the low-resolution images. Our proposed method*1optimizes super-resolution images for the crack segmentation. For this method, we propose the Boundary Combo loss to express the local details of the crack. Experimental results demonstrate that our method outperforms the combinations of other previous approaches.","PeriodicalId":312481,"journal":{"name":"2021 17th International Conference on Machine Vision and Applications (MVA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA51890.2021.9511400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes a method for crack segmentation on low-resolution images. Detailed cracks on their high-resolution images are estimated by super resolution from the low-resolution images. Our proposed method*1optimizes super-resolution images for the crack segmentation. For this method, we propose the Boundary Combo loss to express the local details of the crack. Experimental results demonstrate that our method outperforms the combinations of other previous approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于超分辨率联合学习的低分辨率图像裂纹分割
提出了一种低分辨率图像的裂纹分割方法。通过对低分辨率图像的超分辨率估计其高分辨率图像上的详细裂缝。我们提出的方法*1优化了超分辨率图像的裂缝分割。对于这种方法,我们提出了边界组合损失来表达裂缝的局部细节。实验结果表明,我们的方法优于其他方法的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Output augmentation works well without any domain knowledge On the Influence of Viewpoint Change for Metric Learning Shape from shading and polarization constrained by approximate shape Crack Segmentation for Low-Resolution Images using Joint Learning with Super- Resolution Estimating Contribution of Training Datasets using Shapley Values in Data-scale for Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1