Unsupervised machine learning in industrial applications: a case study in iron mining

L. S. B. Pereira, R. Rodrigues, E. A. C. Neto
{"title":"Unsupervised machine learning in industrial applications: a case study in iron mining","authors":"L. S. B. Pereira, R. Rodrigues, E. A. C. Neto","doi":"10.1109/IBSSC51096.2020.9332174","DOIUrl":null,"url":null,"abstract":"The volume of data collected in the industry has grown rapidly in recent years, transforming into a challenge the task of analyzing this data. To identify patterns and improve industrial processes, several Artificial Intelligence techniques can be used, especially clustering methods. This work applies the technique of clustering and dimensionality reduction in the mining industry, performing a case study in a public database about an iron mining flotation process. The K-means algorithm was used and it was able to identify a statistically significant difference between the clusters in the silica concentration value, an important impurity in the flotation process.","PeriodicalId":432093,"journal":{"name":"2020 IEEE Bombay Section Signature Conference (IBSSC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC51096.2020.9332174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The volume of data collected in the industry has grown rapidly in recent years, transforming into a challenge the task of analyzing this data. To identify patterns and improve industrial processes, several Artificial Intelligence techniques can be used, especially clustering methods. This work applies the technique of clustering and dimensionality reduction in the mining industry, performing a case study in a public database about an iron mining flotation process. The K-means algorithm was used and it was able to identify a statistically significant difference between the clusters in the silica concentration value, an important impurity in the flotation process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工业应用中的无监督机器学习:在铁矿开采中的案例研究
近年来,该行业收集的数据量迅速增长,分析这些数据的任务成为一项挑战。为了识别模式和改进工业流程,可以使用几种人工智能技术,特别是聚类方法。本研究将聚类和降维技术应用于采矿业,在一个关于铁矿浮选过程的公共数据库中进行了案例研究。使用K-means算法,可以识别出浮选过程中重要杂质二氧化硅的浓化值在团簇之间存在统计学显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiclass Spoken Language Identification for Indian Languages using Deep Learning Enhancement of Nighttime Image Visibility Using Wavelet Fusion of Equalized Color Channels and Luminance with Kekre’s LUV Color Space The paradigm shift towards e-Teaching: SWOT analysis from the perspective of Indian teachers Childhood Medulloblastoma Classification Using EfficientNets Unsupervised machine learning in industrial applications: a case study in iron mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1