Open framework for error-compensated gaze data collection with eye tracking glasses

Kari Siivonen, Joose Sainio, Marko Viitanen, Jarno Vanne, T. Hämäläinen
{"title":"Open framework for error-compensated gaze data collection with eye tracking glasses","authors":"Kari Siivonen, Joose Sainio, Marko Viitanen, Jarno Vanne, T. Hämäläinen","doi":"10.1109/ISM.2018.00067","DOIUrl":null,"url":null,"abstract":"Eye tracking is nowadays the primary method for collecting training data for neural networks in the Human Visual System modelling. Our recommendation is to collect eye tracking data from videos with eye tracking glasses that are more affordable and applicable to diverse test conditions than conventionally used screen based eye trackers. Eye tracking glasses are prone to moving during the gaze data collection but our experiments show that the observed displacement error accumulates fairly linearly and can be compensated automatically by the proposed framework. This paper describes how our framework can be used in practice with videos up to 4K resolution. The proposed framework and the data collected during our sample experiment are made publicly available.","PeriodicalId":308698,"journal":{"name":"2018 IEEE International Symposium on Multimedia (ISM)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2018.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Eye tracking is nowadays the primary method for collecting training data for neural networks in the Human Visual System modelling. Our recommendation is to collect eye tracking data from videos with eye tracking glasses that are more affordable and applicable to diverse test conditions than conventionally used screen based eye trackers. Eye tracking glasses are prone to moving during the gaze data collection but our experiments show that the observed displacement error accumulates fairly linearly and can be compensated automatically by the proposed framework. This paper describes how our framework can be used in practice with videos up to 4K resolution. The proposed framework and the data collected during our sample experiment are made publicly available.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于眼动追踪眼镜的误差补偿凝视数据采集开放框架
眼动追踪是目前人类视觉系统建模中收集神经网络训练数据的主要方法。我们的建议是使用眼动追踪眼镜从视频中收集眼动追踪数据,这种眼镜比传统的基于屏幕的眼动追踪仪更便宜,更适用于各种测试条件。眼动追踪眼镜在注视数据采集过程中容易发生移动,但我们的实验表明,观察到的位移误差是线性累积的,并且可以通过所提出的框架自动补偿。本文描述了我们的框架如何在高达4K分辨率的视频中实际使用。提出的框架和在我们的样本实验中收集的数据是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Publisher's information] Using Linear and Non-linear Magnifiers in Eyetracking-Based Human Computer Interaction Open framework for error-compensated gaze data collection with eye tracking glasses Tile-Based Rate Assignment for 360-Degree Video Based on Spatio-Temporal Activity Metrics A Novel Relative Camera Motion Estimation Algorithm with Applications to Visual Odometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1