Management of grid jobs and data within SAMGrid

A. Baranovski, G. Garzoglio, I. Terekhov, A. Roy, T. Tannenbaum
{"title":"Management of grid jobs and data within SAMGrid","authors":"A. Baranovski, G. Garzoglio, I. Terekhov, A. Roy, T. Tannenbaum","doi":"10.1109/CLUSTR.2004.1392634","DOIUrl":null,"url":null,"abstract":"When designing SAMGrid, a project for distributing high-energy physics computations on a grid, we discovered that it was challenging to decide where to place user's jobs. Jobs typically need to access hundreds of files, and each site has a different subset of the files. Our data system SAM knows what portion of a user's data may be at each site, but does not know how to submit grid jobs. Our job submission system Condor-G knows how to submit grid jobs, but originally it required users to choose grid sites and gave them no assistance in choosing. This work describes how we enhanced Condor-G to interact with SAM to make good decisions about where jobs should be executed, and thereby improve the performance of grid jobs that access large amounts of data. All these enhancements are general enough to be applicable to grid computing beyond the data-intensive computing with SAMGrid.","PeriodicalId":123512,"journal":{"name":"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2004.1392634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

When designing SAMGrid, a project for distributing high-energy physics computations on a grid, we discovered that it was challenging to decide where to place user's jobs. Jobs typically need to access hundreds of files, and each site has a different subset of the files. Our data system SAM knows what portion of a user's data may be at each site, but does not know how to submit grid jobs. Our job submission system Condor-G knows how to submit grid jobs, but originally it required users to choose grid sites and gave them no assistance in choosing. This work describes how we enhanced Condor-G to interact with SAM to make good decisions about where jobs should be executed, and thereby improve the performance of grid jobs that access large amounts of data. All these enhancements are general enough to be applicable to grid computing beyond the data-intensive computing with SAMGrid.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
管理SAMGrid中的网格作业和数据
在设计SAMGrid(一个在网格上分布高能物理计算的项目)时,我们发现决定在哪里放置用户的作业是一个挑战。作业通常需要访问数百个文件,每个站点都有不同的文件子集。我们的数据系统SAM知道用户数据的哪一部分可能位于每个站点,但不知道如何提交网格作业。我们的作业提交系统Condor-G知道如何提交网格作业,但最初它要求用户选择网格站点,并没有提供选择帮助。这项工作描述了我们如何增强Condor-G来与SAM交互,从而对应该在哪里执行作业做出正确的决策,从而提高访问大量数据的网格作业的性能。所有这些增强都足够通用,适用于使用SAMGrid进行数据密集型计算以外的网格计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Kerrighed and data parallelism: cluster computing on single system image operating systems Management of grid jobs and data within SAMGrid MPIIMGEN - a code transformer that parallelizes image processing codes to run on a cluster of workstations FTC-Charm++: an in-memory checkpoint-based fault tolerant runtime for Charm++ and MPI Bandwidth-aware co-allocating meta-schedulers for mini-grid architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1