Empirical Evaluation of the Internet Analysis System for Application in the Field of Anomaly Detection

Harald Lampesberger
{"title":"Empirical Evaluation of the Internet Analysis System for Application in the Field of Anomaly Detection","authors":"Harald Lampesberger","doi":"10.1109/EC2ND.2010.10","DOIUrl":null,"url":null,"abstract":"Anomaly detection in computer networks is an actively researched topic in the field of intrusion detection. The Internet Analysis System (IAS) is a software framework which provides passive probes and centralized backend services to collect purely statistical network data in distributed computer networks. This paper presents an empirical evaluation of the IAS data format for detecting anomalies, caused by attack traffic. This process involved the generation of labeled evaluation data based on the 1999 DARPA Intrusion Detection Evaluation data sets and two different supervised machine learning approaches for the assessment. The results of this evaluation conclude, that the IAS is not a convenient data source for advanced anomaly detection in the scope of our research.","PeriodicalId":375908,"journal":{"name":"2010 European Conference on Computer Network Defense","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 European Conference on Computer Network Defense","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EC2ND.2010.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Anomaly detection in computer networks is an actively researched topic in the field of intrusion detection. The Internet Analysis System (IAS) is a software framework which provides passive probes and centralized backend services to collect purely statistical network data in distributed computer networks. This paper presents an empirical evaluation of the IAS data format for detecting anomalies, caused by attack traffic. This process involved the generation of labeled evaluation data based on the 1999 DARPA Intrusion Detection Evaluation data sets and two different supervised machine learning approaches for the assessment. The results of this evaluation conclude, that the IAS is not a convenient data source for advanced anomaly detection in the scope of our research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
互联网分析系统在异常检测领域应用的实证评价
计算机网络异常检测是入侵检测领域研究的热点。Internet分析系统(IAS)是一个软件框架,它提供被动探测和集中后端服务,用于在分布式计算机网络中收集纯统计网络数据。本文提出了用于检测由攻击流量引起的异常的IAS数据格式的经验评估。该过程涉及基于1999年DARPA入侵检测评估数据集和两种不同的监督机器学习评估方法生成标记评估数据。这一评估的结果得出结论,在我们的研究范围内,IAS不是一个方便的高级异常检测数据源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical Evaluation of the Internet Analysis System for Application in the Field of Anomaly Detection Experiences and Observations from the NoAH Infrastructure HTTPreject: Handling Overload Situations without Losing the Contact to the User An Evolutionary Computing Approach for Hunting Buffer Overflow Vulnerabilities: A Case of Aiming in Dim Light Response Initiation in Distributed Intrusion Response Systems for Tactical MANETs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1