Arab Sign language Recognition with Convolutional Neural Networks

Salma Hayani, M. Benaddy, Othmane El Meslouhi, M. Kardouchi
{"title":"Arab Sign language Recognition with Convolutional Neural Networks","authors":"Salma Hayani, M. Benaddy, Othmane El Meslouhi, M. Kardouchi","doi":"10.1109/ICCSRE.2019.8807586","DOIUrl":null,"url":null,"abstract":"The implementation of an automatic recognition system for Arab sign language (ArSL) has a major social and humanitarian impact. With the growth of the deaf-dump community, such a system will help in integrating those people and enjoy a normal life. Like other languages, Arab sign language has many details and diverse characteristics that need a powerful tool to treat it. In this work, we propose a new system based on the convolutional neural networks, fed with a real dataset, this system will recognize automatically numbers and letters of Arab sign language. To validate our system, we have done a comparative study that shows the effectiveness and robustness of our proposed method compared to traditional approaches based on k-nearest neighbors (KNN) and support vector machines (SVM).","PeriodicalId":360150,"journal":{"name":"2019 International Conference of Computer Science and Renewable Energies (ICCSRE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference of Computer Science and Renewable Energies (ICCSRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSRE.2019.8807586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

The implementation of an automatic recognition system for Arab sign language (ArSL) has a major social and humanitarian impact. With the growth of the deaf-dump community, such a system will help in integrating those people and enjoy a normal life. Like other languages, Arab sign language has many details and diverse characteristics that need a powerful tool to treat it. In this work, we propose a new system based on the convolutional neural networks, fed with a real dataset, this system will recognize automatically numbers and letters of Arab sign language. To validate our system, we have done a comparative study that shows the effectiveness and robustness of our proposed method compared to traditional approaches based on k-nearest neighbors (KNN) and support vector machines (SVM).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卷积神经网络的阿拉伯手语识别
阿拉伯手语自动识别系统的实施具有重大的社会和人道主义影响。随着聋哑人社区的发展,这样的系统将有助于这些人融入社会,享受正常的生活。像其他语言一样,阿拉伯手语有许多细节和不同的特征,需要一个强大的工具来处理它。在本文中,我们提出了一种基于卷积神经网络的新系统,在真实数据集的支持下,该系统可以自动识别阿拉伯手语中的数字和字母。为了验证我们的系统,我们进行了一项比较研究,与基于k近邻(KNN)和支持向量机(SVM)的传统方法相比,我们提出的方法具有有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The impact of the thermos-physical parameters of insulation on the energy performance of a building in Morocco Arab Sign language Recognition with Convolutional Neural Networks Patient Radiation Risks during CT Brain procedure in Moroccan hospitals How energy consumption in the cloud data center is calculated Recent Advancements and Developments for Electric Vehicle Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1