Construction of Jakarta Land Use/Land Cover dataset using classification method

T. W. Cenggoro, S. M. Isa, Gede Putra Kusuma
{"title":"Construction of Jakarta Land Use/Land Cover dataset using classification method","authors":"T. W. Cenggoro, S. M. Isa, Gede Putra Kusuma","doi":"10.1109/TENCONSPRING.2016.7519429","DOIUrl":null,"url":null,"abstract":"The field of remote sensing has drawn a lot of attention recently. However, collecting necessary ground truth data for research in this field requires a lot of effort. Therefore, this paper presents a method for constructing estimated ground truth data using classification. This method reduces the workload in collecting remote sensing ground truth data. The contribution of this paper is to prepare and provide estimated Land Cover/Land Use (LULC) ground truth data of Jakarta area using the proposed method. The estimated ground truth data then can be used along with remote sensing image of Jakarta area to form dataset, which can be used for remote sensing research. For the estimated ground truth data to be reliable, the employed classification model have to achieve a reasonably good result. This research compares several algorithms to find the classification model with the best result for this case. The experimental result shows that Neural Network with single hidden layer of 30 neurons achieves best test accuracy of 75.41%. The method of this paper has been successfully implemented to construct LULC dataset of Jakarta area.","PeriodicalId":166275,"journal":{"name":"2016 IEEE Region 10 Symposium (TENSYMP)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCONSPRING.2016.7519429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The field of remote sensing has drawn a lot of attention recently. However, collecting necessary ground truth data for research in this field requires a lot of effort. Therefore, this paper presents a method for constructing estimated ground truth data using classification. This method reduces the workload in collecting remote sensing ground truth data. The contribution of this paper is to prepare and provide estimated Land Cover/Land Use (LULC) ground truth data of Jakarta area using the proposed method. The estimated ground truth data then can be used along with remote sensing image of Jakarta area to form dataset, which can be used for remote sensing research. For the estimated ground truth data to be reliable, the employed classification model have to achieve a reasonably good result. This research compares several algorithms to find the classification model with the best result for this case. The experimental result shows that Neural Network with single hidden layer of 30 neurons achieves best test accuracy of 75.41%. The method of this paper has been successfully implemented to construct LULC dataset of Jakarta area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分类方法的雅加达土地利用/土地覆盖数据集构建
遥感领域最近引起了人们的广泛关注。然而,为这一领域的研究收集必要的地面真实数据需要付出很大的努力。因此,本文提出了一种利用分类构造估计地面真值数据的方法。该方法减少了遥感地物真值数据采集的工作量。本文的贡献在于利用本文提出的方法编制并提供了雅加达地区土地覆盖/土地利用(LULC)地面真值估算数据。估算得到的地面真值数据可与雅加达地区的遥感影像一起组成数据集,用于遥感研究。为了使估计的地真值数据可靠,所采用的分类模型必须达到相当好的结果。本研究通过对几种算法的比较,找到适合本案例的最佳分类模型。实验结果表明,单隐层30个神经元的神经网络测试准确率最高,达到75.41%。本文方法已成功应用于雅加达地区LULC数据集的构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interaction techniques using head gaze for virtual reality Tree-based protocol for ad hoc networks constructed with data transmission modems Formal reliability analysis of protective systems in smart grids Comparative analysis of PCA and KPCA on paddy growth stages classification Short term load forecasting of Eid Al Fitr holiday by using interval Type-2 Fuzzy Inference System (Case study: Electrical system of Java Bali in Indonesia)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1