Optimizing K-means text document clustering using latent semantic indexing and pillar algorithm

Sigit Adinugroho, Y. A. Sari, M. A. Fauzi, P. P. Adikara
{"title":"Optimizing K-means text document clustering using latent semantic indexing and pillar algorithm","authors":"Sigit Adinugroho, Y. A. Sari, M. A. Fauzi, P. P. Adikara","doi":"10.1109/ISCBI.2017.8053549","DOIUrl":null,"url":null,"abstract":"Document clustering is an important tool to help managing the vast amount of digital text document. This paper introduces a new approach to cluster text document. First, text is preprocessed and indexed using inverted index. Then the index is trimmed using TF-DF thresholding. After that, Term Document Matrix is built based on TF-IDF. Next step uses Latent Semantic Indexing to extract important feature from Term Document Matrix. The following process is selecting seeds via Pillar algorithm. Based on determined seeds, K-Means clustering is performed. Experiment result proves that this approach outperforms standard K-Means document clustering.","PeriodicalId":128441,"journal":{"name":"2017 5th International Symposium on Computational and Business Intelligence (ISCBI)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Symposium on Computational and Business Intelligence (ISCBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCBI.2017.8053549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Document clustering is an important tool to help managing the vast amount of digital text document. This paper introduces a new approach to cluster text document. First, text is preprocessed and indexed using inverted index. Then the index is trimmed using TF-DF thresholding. After that, Term Document Matrix is built based on TF-IDF. Next step uses Latent Semantic Indexing to extract important feature from Term Document Matrix. The following process is selecting seeds via Pillar algorithm. Based on determined seeds, K-Means clustering is performed. Experiment result proves that this approach outperforms standard K-Means document clustering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用潜在语义索引和支柱算法优化K-means文本文档聚类
文档聚类是帮助管理海量数字文本文档的重要工具。本文介绍了一种新的文本文档聚类方法。首先,使用倒排索引对文本进行预处理和索引。然后使用TF-DF阈值调整索引。然后,基于TF-IDF构建术语文档矩阵。下一步使用潜在语义索引从术语文档矩阵中提取重要特征。下面的过程是通过柱子算法选择种子。基于确定的种子,进行K-Means聚类。实验结果表明,该方法优于标准K-Means文档聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Critical success factors of enterprise resource planning implementation in construction: Case of Taiwan Portfolios optimization with coherent risk measures in fuzzy asset management Onward movement detection and distance estimation of object using disparity map on stereo vision Triangle similarity approach for detecting eyeball movement Optimizing K-means text document clustering using latent semantic indexing and pillar algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1