Sigit Adinugroho, Y. A. Sari, M. A. Fauzi, P. P. Adikara
{"title":"Optimizing K-means text document clustering using latent semantic indexing and pillar algorithm","authors":"Sigit Adinugroho, Y. A. Sari, M. A. Fauzi, P. P. Adikara","doi":"10.1109/ISCBI.2017.8053549","DOIUrl":null,"url":null,"abstract":"Document clustering is an important tool to help managing the vast amount of digital text document. This paper introduces a new approach to cluster text document. First, text is preprocessed and indexed using inverted index. Then the index is trimmed using TF-DF thresholding. After that, Term Document Matrix is built based on TF-IDF. Next step uses Latent Semantic Indexing to extract important feature from Term Document Matrix. The following process is selecting seeds via Pillar algorithm. Based on determined seeds, K-Means clustering is performed. Experiment result proves that this approach outperforms standard K-Means document clustering.","PeriodicalId":128441,"journal":{"name":"2017 5th International Symposium on Computational and Business Intelligence (ISCBI)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Symposium on Computational and Business Intelligence (ISCBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCBI.2017.8053549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Document clustering is an important tool to help managing the vast amount of digital text document. This paper introduces a new approach to cluster text document. First, text is preprocessed and indexed using inverted index. Then the index is trimmed using TF-DF thresholding. After that, Term Document Matrix is built based on TF-IDF. Next step uses Latent Semantic Indexing to extract important feature from Term Document Matrix. The following process is selecting seeds via Pillar algorithm. Based on determined seeds, K-Means clustering is performed. Experiment result proves that this approach outperforms standard K-Means document clustering.