Gene Regulatory Network Inference through Link Prediction using Graph Neural Network

S. Ganeshamoorthy, L. Roden, D. Klepl, F. He
{"title":"Gene Regulatory Network Inference through Link Prediction using Graph Neural Network","authors":"S. Ganeshamoorthy, L. Roden, D. Klepl, F. He","doi":"10.1109/SPMB55497.2022.10014835","DOIUrl":null,"url":null,"abstract":"Gene Regulatory Networks (GRNs) depict the causal regulatory interactions between transcription factors (TFs) and their target genes [2], where TFs are proteins that regulate gene transcription. GRN plays a vital role in explaining gene function, which helps to identify and prioritize the candidate genes for functional analysis [3]. Currently, high-dimensional transcriptome datasets are produced from high-throughput sequencing techniques, such as microarray and RNA-Seq. These techniques can capture the differences in the expression of thousands of genes at once. Through these wet-lab experiments, studying the interconnections among a large number of genes or TFs at a network level is challenging [4]. Therefore, one of the important topics in computational biology is the inference of GRNs from high-dimensional gene expression data through statistical and machine learning approaches [2].","PeriodicalId":261445,"journal":{"name":"2022 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPMB55497.2022.10014835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gene Regulatory Networks (GRNs) depict the causal regulatory interactions between transcription factors (TFs) and their target genes [2], where TFs are proteins that regulate gene transcription. GRN plays a vital role in explaining gene function, which helps to identify and prioritize the candidate genes for functional analysis [3]. Currently, high-dimensional transcriptome datasets are produced from high-throughput sequencing techniques, such as microarray and RNA-Seq. These techniques can capture the differences in the expression of thousands of genes at once. Through these wet-lab experiments, studying the interconnections among a large number of genes or TFs at a network level is challenging [4]. Therefore, one of the important topics in computational biology is the inference of GRNs from high-dimensional gene expression data through statistical and machine learning approaches [2].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图神经网络链接预测的基因调控网络推断
基因调控网络(grn)描述了转录因子(tf)与其靶基因之间的因果调控相互作用[2],其中tf是调节基因转录的蛋白质。GRN在解释基因功能方面起着至关重要的作用,它有助于识别和优先考虑候选基因进行功能分析[3]。目前,高维转录组数据集是由高通量测序技术产生的,如微阵列和RNA-Seq。这些技术可以同时捕获数千个基因表达的差异。通过这些湿实验室实验,在网络水平上研究大量基因或tf之间的相互联系是具有挑战性的[4]。因此,通过统计和机器学习方法从高维基因表达数据推断grn是计算生物学的重要课题之一[2]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Calibration of Automatic Seizure Detection Algorithms Detecting Human Posterior Lens Surface Topographical Changes During Accommodation Gene Regulatory Network Inference through Link Prediction using Graph Neural Network Analysis of Interpretable Handwriting Features to Evaluate Motoric Patterns in Different Neurodegenerative Diseases An LSTM-based Recurrent Neural Network for Neonatal Sepsis Detection in Preterm Infants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1