Donglin Wang, Xueliang Du, Leizu Yin, Chen Lin, Hong Ma, Weili Ren, Huijuan Wang, Xingang Wang, Shaolin Xie, L. Wang, Zijun Liu, Tao Wang, Zhonghua Pu, Guangxin Ding, Mengchen Zhu, Lipeng Yang, Ruoshan Guo, Zhiwei Zhang, Xiao Lin, Jie Hao, Yongyong Yang, Wenqin Sun, Fabiao Zhou, NuoZhou Xiao, Q. Cui, Xiaoqin Wang
{"title":"MaPU: A novel mathematical computing architecture","authors":"Donglin Wang, Xueliang Du, Leizu Yin, Chen Lin, Hong Ma, Weili Ren, Huijuan Wang, Xingang Wang, Shaolin Xie, L. Wang, Zijun Liu, Tao Wang, Zhonghua Pu, Guangxin Ding, Mengchen Zhu, Lipeng Yang, Ruoshan Guo, Zhiwei Zhang, Xiao Lin, Jie Hao, Yongyong Yang, Wenqin Sun, Fabiao Zhou, NuoZhou Xiao, Q. Cui, Xiaoqin Wang","doi":"10.1109/HPCA.2016.7446086","DOIUrl":null,"url":null,"abstract":"As the feature size of the semiconductor process is scaling down to 10nm and below, it is possible to assemble systems with high performance processors that can theoretically provide computational power of up to tens of PLOPS. However, the power consumption of these systems is also rocketing up to tens of millions watts, and the actual performance is only around 60% of the theoretical performance. Today, power efficiency and sustained performance have become the main foci of processor designers. Traditional computing architecture such as superscalar and GPGPU are proven to be power inefficient, and there is a big gap between the actual and peak performance. In this paper, we present the MaPU architecture, a novel architecture which is suitable for data-intensive computing with great power efficiency and sustained computation throughput. To achieve this goal, MaPU attempts to optimize the application from a system perspective, including the hardware, algorithm and corresponding program model. It uses an innovative multi-granularity parallel memory system with intrinsic shuffle ability, cascading pipelines with wide SIMD data paths and a state-machine-based program model. When executing typical signal processing algorithms, a single MaPU core implemented with a 40nm process exhibits a sustained performance of 134 GLOPS while consuming only 2.8 W in power, which increases the actual power efficiency by an order of magnitude comparable with the traditional CPU and GPGPU.","PeriodicalId":417994,"journal":{"name":"2016 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2016.7446086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
As the feature size of the semiconductor process is scaling down to 10nm and below, it is possible to assemble systems with high performance processors that can theoretically provide computational power of up to tens of PLOPS. However, the power consumption of these systems is also rocketing up to tens of millions watts, and the actual performance is only around 60% of the theoretical performance. Today, power efficiency and sustained performance have become the main foci of processor designers. Traditional computing architecture such as superscalar and GPGPU are proven to be power inefficient, and there is a big gap between the actual and peak performance. In this paper, we present the MaPU architecture, a novel architecture which is suitable for data-intensive computing with great power efficiency and sustained computation throughput. To achieve this goal, MaPU attempts to optimize the application from a system perspective, including the hardware, algorithm and corresponding program model. It uses an innovative multi-granularity parallel memory system with intrinsic shuffle ability, cascading pipelines with wide SIMD data paths and a state-machine-based program model. When executing typical signal processing algorithms, a single MaPU core implemented with a 40nm process exhibits a sustained performance of 134 GLOPS while consuming only 2.8 W in power, which increases the actual power efficiency by an order of magnitude comparable with the traditional CPU and GPGPU.