Gonzalo Berger, Tatiana Rischewski, Luis Chiruzzo, Aiala Rosá
{"title":"Generation of English Question Answer Exercises from Texts using Transformers based Models","authors":"Gonzalo Berger, Tatiana Rischewski, Luis Chiruzzo, Aiala Rosá","doi":"10.1109/LA-CCI54402.2022.9981171","DOIUrl":null,"url":null,"abstract":"This paper studies the use of NLP techniques, in particular, neural language models, for the generation of question/answer exercises from English texts. The experiments aim to generate beginner-level exercises from simple texts, to be used in teaching ESL (English as a Second Language) to children. The approach we present in this paper is based on four stages: a pre-processing stage that, among other basic tasks, applies a co-reference resolution tool; an answer candidate selection stage, which is based on semantic role labeling; a question generation stage, which takes as input the text with the resolved co-references and returns a set of questions for each answer candidate using a language model based on the Transformers architecture; and a post-processing stage that adjusts the format of the generated questions. The question generation model was evaluated on a benchmark obtaining similar results to those of previous works, and the complete pipeline was evaluated on a corpus specifically created for this task, achieving good results.","PeriodicalId":190561,"journal":{"name":"2022 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI54402.2022.9981171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper studies the use of NLP techniques, in particular, neural language models, for the generation of question/answer exercises from English texts. The experiments aim to generate beginner-level exercises from simple texts, to be used in teaching ESL (English as a Second Language) to children. The approach we present in this paper is based on four stages: a pre-processing stage that, among other basic tasks, applies a co-reference resolution tool; an answer candidate selection stage, which is based on semantic role labeling; a question generation stage, which takes as input the text with the resolved co-references and returns a set of questions for each answer candidate using a language model based on the Transformers architecture; and a post-processing stage that adjusts the format of the generated questions. The question generation model was evaluated on a benchmark obtaining similar results to those of previous works, and the complete pipeline was evaluated on a corpus specifically created for this task, achieving good results.