Intelligent Static Calibration of Industrial Robots using Artificial Bee Colony Algorithm

M. A. Khanesar, Minrui Yan, Peter Kendal, Mohammad Isa, S. Piano, David T. Branson
{"title":"Intelligent Static Calibration of Industrial Robots using Artificial Bee Colony Algorithm","authors":"M. A. Khanesar, Minrui Yan, Peter Kendal, Mohammad Isa, S. Piano, David T. Branson","doi":"10.1109/ICM54990.2023.10101918","DOIUrl":null,"url":null,"abstract":"This paper proposes an industrial robot calibration methodology using an artificial bee colony algorithm. Open loop industrial robot positions are usually calculated using joint angle readings and industrial robot forward kinematics, where feedback control systems are then use iteratively to improve performance. This can often be time consuming and risks unstable control, so the preference is to enable as accurate open loop control as possible. Industrial robot forward kinematics include Denavit-Hartenberg (DH) parameters. However, assembly and manufacturing tolerances may result in differences between actual and nominal DH parameters. To improve industrial robot positional accuracies, it is required to better estimate its DH parameters. A highly accurate laser tracker system provides the positional measurement required to perform calibration of the DH parameters. For this purpose, a Leica AT960-MR, a laser tracker which works based on interferometry principles, is used to provide end effector 3D position measurements. An artificial Bee colony algorithm is then used to improve the cost function associated with the forward kinematic error by estimating more accurate industrial robot DH parameters. The implementation results demonstrate that using calibrated industrial robot DH parameters, it is possible to improve the open loop positional accuracies of the robot compared to uncalibrated forward kinematics mean absolute error for test data from 75.4 $\\mu$m to 60.1 $\\mu$m (20.3% improvement).","PeriodicalId":416176,"journal":{"name":"2023 IEEE International Conference on Mechatronics (ICM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM54990.2023.10101918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes an industrial robot calibration methodology using an artificial bee colony algorithm. Open loop industrial robot positions are usually calculated using joint angle readings and industrial robot forward kinematics, where feedback control systems are then use iteratively to improve performance. This can often be time consuming and risks unstable control, so the preference is to enable as accurate open loop control as possible. Industrial robot forward kinematics include Denavit-Hartenberg (DH) parameters. However, assembly and manufacturing tolerances may result in differences between actual and nominal DH parameters. To improve industrial robot positional accuracies, it is required to better estimate its DH parameters. A highly accurate laser tracker system provides the positional measurement required to perform calibration of the DH parameters. For this purpose, a Leica AT960-MR, a laser tracker which works based on interferometry principles, is used to provide end effector 3D position measurements. An artificial Bee colony algorithm is then used to improve the cost function associated with the forward kinematic error by estimating more accurate industrial robot DH parameters. The implementation results demonstrate that using calibrated industrial robot DH parameters, it is possible to improve the open loop positional accuracies of the robot compared to uncalibrated forward kinematics mean absolute error for test data from 75.4 $\mu$m to 60.1 $\mu$m (20.3% improvement).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工蜂群算法的工业机器人智能静态标定
提出了一种基于人工蜂群算法的工业机器人标定方法。开环工业机器人的位置通常使用关节角度读数和工业机器人正运动学来计算,然后迭代地使用反馈控制系统来提高性能。这通常是耗时的,并且有控制不稳定的风险,因此首选是启用尽可能精确的开环控制。工业机器人正运动学包括Denavit-Hartenberg (DH)参数。然而,装配和制造公差可能导致实际和标称DH参数之间的差异。为了提高工业机器人的定位精度,需要更好地估计其DH参数。高度精确的激光跟踪系统提供了执行DH参数校准所需的位置测量。为此,徕卡AT960-MR,一种基于干涉测量原理的激光跟踪器,用于提供末端执行器的3D位置测量。然后利用人工蜂群算法通过估计更精确的工业机器人DH参数来改进与正运动学误差相关的代价函数。实施结果表明,与未校准的正运动学平均绝对误差相比,使用校准的工业机器人DH参数可以提高机器人的开环位置精度,测试数据的平均绝对误差从75.4 $\mu$m提高到60.1 $\mu$m(提高20.3%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sliding Mode-Based Design of Unified Force and Position Control for Series Elastic Actuator Frequency-domain Analysis for Infinite Resets Systems* Intelligent Static Calibration of Industrial Robots using Artificial Bee Colony Algorithm Energy Localization in Spring-Motor Coupling System by Switching Mass Control Drowsy Driver Detection System For Poor Light Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1