{"title":"Spatial backoff contention resolution for wireless networks","authors":"Xue Yang, N. Vaidya","doi":"10.1109/WIMESH.2006.288600","DOIUrl":null,"url":null,"abstract":"Traditional medium access control (MAC) protocols utilize temporal mechanisms such as access probability or backoff interval adaptation for contention resolution. They typically take the set of competing nodes as a given, and address the problem of adapting each node's channel access behavior to the given channel contention level. This is a temporal approach for contention resolution, which aims to separate transmissions from different nodes in time to achieve successful transmissions. We explore an alternative approach for wireless networks-named \"spatial backoff-that adapts the \"space\" occupied by the transmissions. Each transmission in a wireless network competes for a certain space. By adapting the space occupied by transmissions, the set of \"locally\" competing nodes, and thus, the channel contention level, can be adjusted to reach a suitable level. There are different ways to realize spatial backoff. In this paper, we propose a dynamic spatial backoff algorithm using the joint control of carrier sense threshold and transmission rate. Our results suggest that spatial backoff can lead to a substantial gain in channel utilization.","PeriodicalId":426713,"journal":{"name":"2006 2nd IEEE Workshop on Wireless Mesh Networks","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 2nd IEEE Workshop on Wireless Mesh Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIMESH.2006.288600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
Traditional medium access control (MAC) protocols utilize temporal mechanisms such as access probability or backoff interval adaptation for contention resolution. They typically take the set of competing nodes as a given, and address the problem of adapting each node's channel access behavior to the given channel contention level. This is a temporal approach for contention resolution, which aims to separate transmissions from different nodes in time to achieve successful transmissions. We explore an alternative approach for wireless networks-named "spatial backoff-that adapts the "space" occupied by the transmissions. Each transmission in a wireless network competes for a certain space. By adapting the space occupied by transmissions, the set of "locally" competing nodes, and thus, the channel contention level, can be adjusted to reach a suitable level. There are different ways to realize spatial backoff. In this paper, we propose a dynamic spatial backoff algorithm using the joint control of carrier sense threshold and transmission rate. Our results suggest that spatial backoff can lead to a substantial gain in channel utilization.