Detection of Distributed Denial of Service (DDoS) Attacks Using Computational Intelligence and Majority Vote-Based Ensemble Approach

Anupama Mishra, B. Joshi, Varsha Arya, A. Gupta, Kwok Tai Chui
{"title":"Detection of Distributed Denial of Service (DDoS) Attacks Using Computational Intelligence and Majority Vote-Based Ensemble Approach","authors":"Anupama Mishra, B. Joshi, Varsha Arya, A. Gupta, Kwok Tai Chui","doi":"10.4018/ijssci.309707","DOIUrl":null,"url":null,"abstract":"The term “distributed denial of service” (DDoS) refers to one of the most common types of attacks. Sending a huge volume of data packets to the server machine is the target of a DDoS attack. This results in the majority of the consumption of network bandwidth and server, which ultimately leads to an issue with denial of service. In this paper, a majority vote-based ensemble of classifiers is utilized in the Sever technique, which results in improved accuracy and reduced computational overhead, when detecting attacks. For the experiment, the authors have used the CICDDOS2019 dataset. According to the findings of the experiment, a high level of accuracy of 99.98% was attained. In this paper, the classifiers use random forest, decision tree, and naïve bayes for majority voting classifiers, and from the results and performance, it can be seen that majority vote classifiers performed better.","PeriodicalId":432255,"journal":{"name":"Int. J. Softw. Sci. Comput. Intell.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Sci. Comput. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijssci.309707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The term “distributed denial of service” (DDoS) refers to one of the most common types of attacks. Sending a huge volume of data packets to the server machine is the target of a DDoS attack. This results in the majority of the consumption of network bandwidth and server, which ultimately leads to an issue with denial of service. In this paper, a majority vote-based ensemble of classifiers is utilized in the Sever technique, which results in improved accuracy and reduced computational overhead, when detecting attacks. For the experiment, the authors have used the CICDDOS2019 dataset. According to the findings of the experiment, a high level of accuracy of 99.98% was attained. In this paper, the classifiers use random forest, decision tree, and naïve bayes for majority voting classifiers, and from the results and performance, it can be seen that majority vote classifiers performed better.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于计算智能和多数票集成方法的分布式拒绝服务攻击检测
术语“分布式拒绝服务”(DDoS)指的是一种最常见的攻击类型。向服务器机器发送大量数据包是DDoS攻击的目标。这将导致大部分网络带宽和服务器的消耗,最终导致拒绝服务的问题。在本文中,在Sever技术中使用了基于多数投票的分类器集成,在检测攻击时提高了准确性并减少了计算开销。在实验中,作者使用了CICDDOS2019数据集。实验结果表明,该方法的准确率达到了99.98%。本文的分类器使用随机森林、决策树和naïve贝叶斯作为多数投票分类器,从结果和性能可以看出,多数投票分类器的表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge Discovery of Hospital Medical Technology Based on Partial Ordered Structure Diagrams Artificial Intelligence Techniques to improve cognitive traits of Down Syndrome Individuals: An Analysis TA-WHI: Text Analysis of Web-Based Health Information Detection of Distributed Denial of Service (DDoS) Attacks Using Computational Intelligence and Majority Vote-Based Ensemble Approach Model-Based Method for Optimisation of an Adaptive System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1