{"title":"TopographyNET","authors":"Lillian Zhu, Feng Zhu, J. Price","doi":"10.1145/3535508.3545533","DOIUrl":null,"url":null,"abstract":"We often find our minds drifting off a current task towards something else, a phenomenon known as mind wandering. Mind wandering can negatively impact performance of many tasks (e.g., learning). Thus, it is crucial to find a way to detect mind wandering. Using deep learning and electroencephalogram (EEG) seems very promising. EEG systems offer high temporal precision and accessibility, and deep learning can automatically extract features from EEG signals. However, three key challenges hinder deep learning performance: the dynamic and distributed nature of mind wandering, small EEG datasets, and diverse EEG systems. Existing deep learning solutions do not perform well on the small datasets and cannot use data from other EEG systems. We propose a novel deep learning model, TopographyNET, which 1) captures the dynamic and distributed properties through spatial and temporal processing via 2D topographic scalp maps and a recurrent neural network; 2) applies transfer learning to address the issue of small datasets using a pretrained image classification neural network on topographic scalp maps; and 3) represents data in a uniform format and thus enables the usage of EEG data from diverse systems. Compared to an existing solution, our approach achieves a much higher classification accuracy. In addition, we present the hyperparameter tuning process that helped us achieve a high classification accuracy.","PeriodicalId":354504,"journal":{"name":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3535508.3545533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We often find our minds drifting off a current task towards something else, a phenomenon known as mind wandering. Mind wandering can negatively impact performance of many tasks (e.g., learning). Thus, it is crucial to find a way to detect mind wandering. Using deep learning and electroencephalogram (EEG) seems very promising. EEG systems offer high temporal precision and accessibility, and deep learning can automatically extract features from EEG signals. However, three key challenges hinder deep learning performance: the dynamic and distributed nature of mind wandering, small EEG datasets, and diverse EEG systems. Existing deep learning solutions do not perform well on the small datasets and cannot use data from other EEG systems. We propose a novel deep learning model, TopographyNET, which 1) captures the dynamic and distributed properties through spatial and temporal processing via 2D topographic scalp maps and a recurrent neural network; 2) applies transfer learning to address the issue of small datasets using a pretrained image classification neural network on topographic scalp maps; and 3) represents data in a uniform format and thus enables the usage of EEG data from diverse systems. Compared to an existing solution, our approach achieves a much higher classification accuracy. In addition, we present the hyperparameter tuning process that helped us achieve a high classification accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Examining post-pandemic behaviors influencing human mobility trends Geographic ensembles of observations using randomised ensembles of autoregression chains: ensemble methods for spatio-temporal time series forecasting of influenza-like illness Trajectory-based and sound-based medical data clustering Session details: Graphs & networks TopographyNET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1