Information Extraction from Arabic Law Documents

Samah Abu Shamma, Aseel Ayasa, Wala’ Sleem, A. Yahya
{"title":"Information Extraction from Arabic Law Documents","authors":"Samah Abu Shamma, Aseel Ayasa, Wala’ Sleem, A. Yahya","doi":"10.1109/AICT50176.2020.9368577","DOIUrl":null,"url":null,"abstract":"Information hidden in unstructured or semi-structured law documents can be very useful but may not be readily accessible. To get this information, an information extraction (IE) system is needed. Making extracted information available in structured form enables answering complex queries that may go well beyond simple keyword search and thus may be of interest to law professionals. In this paper we address the issue of Arabic information extraction from law documents. We describe a system we developed to extract important information, that may be of interest to potential users of these documents, with minimal human intervention. We employs a hybrid approach that utilizes machine learning and rule-based methods and Arabic NLP to facilitate the extraction of needed information. The approach was applied to a limited class of Arabic law documents and we are working on extending it to other document types and to other fields.","PeriodicalId":136491,"journal":{"name":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT50176.2020.9368577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Information hidden in unstructured or semi-structured law documents can be very useful but may not be readily accessible. To get this information, an information extraction (IE) system is needed. Making extracted information available in structured form enables answering complex queries that may go well beyond simple keyword search and thus may be of interest to law professionals. In this paper we address the issue of Arabic information extraction from law documents. We describe a system we developed to extract important information, that may be of interest to potential users of these documents, with minimal human intervention. We employs a hybrid approach that utilizes machine learning and rule-based methods and Arabic NLP to facilitate the extraction of needed information. The approach was applied to a limited class of Arabic law documents and we are working on extending it to other document types and to other fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从阿拉伯法律文件中提取信息
隐藏在非结构化或半结构化法律文件中的信息可能非常有用,但可能不容易获取。为了获得这些信息,需要一个信息提取(IE)系统。将提取的信息以结构化的形式提供,可以回答复杂的查询,这些查询可能远远超出简单的关键字搜索,因此可能会引起法律专业人员的兴趣。在本文中,我们解决了从法律文件中提取阿拉伯语信息的问题。我们描述了一个我们开发的提取重要信息的系统,这些信息可能是这些文档的潜在用户感兴趣的,人工干预最少。我们采用混合方法,利用机器学习和基于规则的方法以及阿拉伯语NLP来促进所需信息的提取。该方法已应用于有限类别的阿拉伯法律文件,我们正在努力将其扩展到其他文件类型和其他领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blockchain-based open infrastructure for URL filtering in an Internet browser 2D Amplitude-Only Microwave Tomography Algorithm for Breast-Cancer Detection Information Extraction from Arabic Law Documents An Experimental Design Approach to Analyse the Performance of Island-Based Parallel Artificial Bee Colony Algorithm Automation Check Vulnerabilities Of Access Points Based On 802.11 Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1