Web opinions analysis with scalable distance-based clustering

Christopher C. Yang, T. D. Ng
{"title":"Web opinions analysis with scalable distance-based clustering","authors":"Christopher C. Yang, T. D. Ng","doi":"10.1109/ISI.2009.5137273","DOIUrl":null,"url":null,"abstract":"Due to the advance of Web 2.0 technologies, a large volume of web opinions are available in computer-mediated communication sites such as forums and blogs. Many of these web opinions involve terrorism and crime related issues. For instances, some terrorist groups may use web forums to propagandize their ideology, some may post threaten messages, and some criminals may recruit members or identify victims through web social networks. Analyzing and clustering Web opinions are extremely challenging. Unlike regular documents, web opinions usually appear as short and sparse text messages. Using typical document clustering techniques on web opinions produce unsatisfying result. In this work, we propose the scalable distance-based clustering technique for web opinions clustering. We have conducted experiments and benchmarked with the density-based algorithm. It shows that it obtains higher micro and macro accuracy. This web opinions clustering technique is useful in identifying the themes of discussions in web social networks and studying their development as well as the interactions of active participants.","PeriodicalId":210911,"journal":{"name":"2009 IEEE International Conference on Intelligence and Security Informatics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2009.5137273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Due to the advance of Web 2.0 technologies, a large volume of web opinions are available in computer-mediated communication sites such as forums and blogs. Many of these web opinions involve terrorism and crime related issues. For instances, some terrorist groups may use web forums to propagandize their ideology, some may post threaten messages, and some criminals may recruit members or identify victims through web social networks. Analyzing and clustering Web opinions are extremely challenging. Unlike regular documents, web opinions usually appear as short and sparse text messages. Using typical document clustering techniques on web opinions produce unsatisfying result. In this work, we propose the scalable distance-based clustering technique for web opinions clustering. We have conducted experiments and benchmarked with the density-based algorithm. It shows that it obtains higher micro and macro accuracy. This web opinions clustering technique is useful in identifying the themes of discussions in web social networks and studying their development as well as the interactions of active participants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可扩展距离聚类的Web意见分析
由于Web 2.0技术的进步,大量的网络意见可以在论坛和博客等以计算机为媒介的交流网站上获得。这些网络观点中有许多涉及恐怖主义和犯罪相关问题。例如,一些恐怖组织可能会利用网络论坛来宣传他们的意识形态,一些可能会发布威胁信息,一些犯罪分子可能会通过网络社交网络招募成员或确定受害者。分析和聚类网络意见是极具挑战性的。与常规文件不同,网络意见通常以简短的文本信息形式出现。使用典型的文档聚类技术对网络意见进行聚类,结果并不令人满意。在这项工作中,我们提出了可扩展的基于距离的网络意见聚类技术。我们已经用基于密度的算法进行了实验和基准测试。结果表明,该方法具有较高的微观和宏观精度。这种网络意见聚类技术在识别网络社交网络中的讨论主题、研究其发展以及活跃参与者的互动方面非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social network classification incorporating link type values Weaving ontologies to support digital forensic analysis Building a better password: The role of cognitive load in information security training Web opinions analysis with scalable distance-based clustering A Higher Order Collective Classifier for detecting and classifying network events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1