Andrew Lukefahr, Shruti Padmanabha, R. Das, R. Dreslinski, T. Wenisch, S. Mahlke
{"title":"Heterogeneous microarchitectures trump voltage scaling for low-power cores","authors":"Andrew Lukefahr, Shruti Padmanabha, R. Das, R. Dreslinski, T. Wenisch, S. Mahlke","doi":"10.1145/2628071.2628078","DOIUrl":null,"url":null,"abstract":"Heterogeneous architectures offer many potential avenues for improving energy efficiency in today's low-power cores. Two common approaches are dynamic voltage/frequency scaling (DVFS) and heterogeneous microarchitectures (HMs). Traditionally both approaches have incurred large switching overheads, which limit their applicability to coarse-grain program phases. However, recent research has demonstrated low-overhead mechanisms that enable switching at granularities as low as 1K instructions. The question remains, in this fine-grained switching regime, which form of heterogeneity offers better energy efficiency for a given level of performance? The effectiveness of these techniques depend critically on both efficient architectural implementation and accurate scheduling to maximize energy efficiency for a given level of performance. Therefore, we develop PaTH, an offline analysis tool, to compute (near-)optimal schedules, allowing us to determine Pareto-optimal energy savings for a given architecture. We leverage PaTH to study the potential energy efficiency of fine-grained DVFS and HMs, as well as a hybrid approach. We show that HMs achieve higher energy savings than DVFS for a given level of performance. While at a coarse granularity the combination of DVFS and HMs still proves beneficial, for fine-grained scheduling their combination makes little sense as HMs alone provide the bulk of the energy efficiency.","PeriodicalId":263670,"journal":{"name":"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2628071.2628078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44
Abstract
Heterogeneous architectures offer many potential avenues for improving energy efficiency in today's low-power cores. Two common approaches are dynamic voltage/frequency scaling (DVFS) and heterogeneous microarchitectures (HMs). Traditionally both approaches have incurred large switching overheads, which limit their applicability to coarse-grain program phases. However, recent research has demonstrated low-overhead mechanisms that enable switching at granularities as low as 1K instructions. The question remains, in this fine-grained switching regime, which form of heterogeneity offers better energy efficiency for a given level of performance? The effectiveness of these techniques depend critically on both efficient architectural implementation and accurate scheduling to maximize energy efficiency for a given level of performance. Therefore, we develop PaTH, an offline analysis tool, to compute (near-)optimal schedules, allowing us to determine Pareto-optimal energy savings for a given architecture. We leverage PaTH to study the potential energy efficiency of fine-grained DVFS and HMs, as well as a hybrid approach. We show that HMs achieve higher energy savings than DVFS for a given level of performance. While at a coarse granularity the combination of DVFS and HMs still proves beneficial, for fine-grained scheduling their combination makes little sense as HMs alone provide the bulk of the energy efficiency.