Cardinality Single Column Analysis for Data Profiling using an Open Source Platform

T. F. Kusumasari, S. R. Amethyst, M. A. Hasibuan, W. A. Nurtrisha
{"title":"Cardinality Single Column Analysis for Data Profiling using an Open Source Platform","authors":"T. F. Kusumasari, S. R. Amethyst, M. A. Hasibuan, W. A. Nurtrisha","doi":"10.1109/ICST50505.2020.9732836","DOIUrl":null,"url":null,"abstract":"Data quality is essential for an enterprise system. However, several problems can eradicate the quality of data. One of them is the unfiltered data received. To overcome this issue, data engineer usually handle this such data by deploying data profiling process. There are several tools available to do this process. Each tool has its advantages according to needs. The main focus of this research is to compare the analysis results of two open-source data profiling tools based on cardinality method. The tools are Pentaho Data Integration (PDI) and Data Cleaner. The results of this study indicate that Pentaho can search for median values and distinct values for the data performed by profiling, while data cleaners cannot search for these values. Thus that Pentaho Data Integration is more detailed and specific compared to Data Cleaner","PeriodicalId":125807,"journal":{"name":"2020 6th International Conference on Science and Technology (ICST)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Science and Technology (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICST50505.2020.9732836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data quality is essential for an enterprise system. However, several problems can eradicate the quality of data. One of them is the unfiltered data received. To overcome this issue, data engineer usually handle this such data by deploying data profiling process. There are several tools available to do this process. Each tool has its advantages according to needs. The main focus of this research is to compare the analysis results of two open-source data profiling tools based on cardinality method. The tools are Pentaho Data Integration (PDI) and Data Cleaner. The results of this study indicate that Pentaho can search for median values and distinct values for the data performed by profiling, while data cleaners cannot search for these values. Thus that Pentaho Data Integration is more detailed and specific compared to Data Cleaner
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基数单列分析的数据分析使用开源平台
数据质量对企业系统至关重要。然而,有几个问题会影响数据的质量。其中之一是接收到的未经过滤的数据。为了克服这个问题,数据工程师通常通过部署数据分析过程来处理这些数据。有几个工具可以完成这个过程。根据需要,每种工具都有其优点。本研究的重点是比较两种基于基数方法的开源数据分析工具的分析结果。这些工具是Pentaho Data Integration (PDI)和Data Cleaner。本研究的结果表明,Pentaho可以搜索由分析执行的数据的中值和不同值,而数据清理器不能搜索这些值。因此,与Data Cleaner相比,Pentaho Data Integration更加详细和具体
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review on Battery Energy Storage System for Power System with Grid Connected Wind Farm Identification of Reef Characteristics Using Remote Sensing Technology in Ayau Islands, Indonesia Cardinality Single Column Analysis for Data Profiling using an Open Source Platform Techno-Economic Analysis of Implementation IEEE 802.11ah Standard for Smart Meter Application in Bandung Area Performance Analysis of On-Off Keying Modulation on Underwater Visible Light Communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1