The Digital Watermarking Algorithm Based on the Big Data Algebra Graoh

Yang Wangming
{"title":"The Digital Watermarking Algorithm Based on the Big Data Algebra Graoh","authors":"Yang Wangming","doi":"10.1109/ICRIS.2017.92","DOIUrl":null,"url":null,"abstract":"Comprehensive information and contradiction of the curse of dimensionality is biggest hiden problem of the big data era. Discrete cosine transform (DCT) digital watermarking has always been the mainstream watermarking method, but the existing algorithms do not work well for high-dimensional nonlinear data; the indepth digital watermarkbelongs to nonlinear digital watermarking method, is has better application for the approximation problem of complex functions, but very sensitive to the hidden layer parameters. For above problems, the large data algebraic graph theory is introduced into of digital watermarking, and proposes a optimized digital watermarking algorithm based on algebraic graph of big data era. This algorithm used big data algebraic graph evolution strategy to implement the golbal serach and character of optimization, and optimize towards the structure of indepth digital watermark and related parameters. Both theoretical analysis and experimental results have proved the effectiveness of the algorithm.","PeriodicalId":443064,"journal":{"name":"2017 International Conference on Robots & Intelligent System (ICRIS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Robots & Intelligent System (ICRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRIS.2017.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Comprehensive information and contradiction of the curse of dimensionality is biggest hiden problem of the big data era. Discrete cosine transform (DCT) digital watermarking has always been the mainstream watermarking method, but the existing algorithms do not work well for high-dimensional nonlinear data; the indepth digital watermarkbelongs to nonlinear digital watermarking method, is has better application for the approximation problem of complex functions, but very sensitive to the hidden layer parameters. For above problems, the large data algebraic graph theory is introduced into of digital watermarking, and proposes a optimized digital watermarking algorithm based on algebraic graph of big data era. This algorithm used big data algebraic graph evolution strategy to implement the golbal serach and character of optimization, and optimize towards the structure of indepth digital watermark and related parameters. Both theoretical analysis and experimental results have proved the effectiveness of the algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于大数据代数Graoh的数字水印算法
全面信息与维度诅咒的矛盾是大数据时代最大的隐性问题。离散余弦变换(DCT)数字水印一直是主流的数字水印方法,但现有算法对高维非线性数据的处理效果不理想;深度数字水印属于非线性数字水印方法,对复杂函数的逼近问题有较好的应用,但对隐层参数非常敏感。针对上述问题,将大数据代数图理论引入到数字水印中,提出了一种基于大数据时代代数图的优化数字水印算法。该算法采用大数据代数图进化策略实现全局搜索和特征优化,并对深度数字水印的结构和相关参数进行优化。理论分析和实验结果都证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Clothing Design Approach Based on BP Neural Network Analysis and Protection of Lightning Damage in Pumped Storage Power Station Hillside Cable Ramp Automatic Torque Method SPSS Analysis on the Efficiency of Art Education Based on Teaching Cloud Platform The Digital Watermarking Algorithm Based on the Big Data Algebra Graoh
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1