Luis Alberto Holgado-Apaza, Coren Luhana Ancco-Calloapaza, Octavio Bedregal-Flores, Marleny Quispe-Layme, Ralph Miranda-Castillo
{"title":"Midiendo la carga emocional: Análisis de las emociones presentes en contenido de tweets sobre COVID-19 en Lima","authors":"Luis Alberto Holgado-Apaza, Coren Luhana Ancco-Calloapaza, Octavio Bedregal-Flores, Marleny Quispe-Layme, Ralph Miranda-Castillo","doi":"10.51252/rcsi.v3i2.587","DOIUrl":null,"url":null,"abstract":"Durante el estado de emergencia y las cuarentenas implementadas por los líderes mundiales, se ha observado un aumento significativo en la actividad de las personas en las redes sociales, como Twitter, donde comparten opiniones y noticias cargadas de emociones. En este estudio, presentamos una herramienta de visualización para el análisis de sentimientos en tweets relacionados con COVID-19 en la ciudad de Lima, Perú, durante el año 2020. Para ello, entrenamos un modelo BERT llamado BETO, diseñado específicamente para el procesamiento de lenguaje natural en español. Utilizamos el conjunto de datos SenWave, que comprende 11 emociones, para entrenar el modelo. Posteriormente, validamos el modelo utilizando un conjunto de datos compuesto por 33,770 tweets recolectados en la ciudad de Lima, Perú. El resultado de nuestro estudio es un panel de control interactivo que muestra el flujo de sentimientos expresados en los tweets analizados. Nuestros hallazgos revelan que las tres emociones más frecuentes durante el año 2020 fueron: humor, aburrimiento y optimismo. Además, identificamos las cinco palabras más populares utilizadas en los tweets: contagio, salud, distanciamiento, aislamiento y Martín Vizcarra, en referencia al expresidente del Perú.","PeriodicalId":441697,"journal":{"name":"Revista Científica de Sistemas e Informática","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Científica de Sistemas e Informática","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51252/rcsi.v3i2.587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Durante el estado de emergencia y las cuarentenas implementadas por los líderes mundiales, se ha observado un aumento significativo en la actividad de las personas en las redes sociales, como Twitter, donde comparten opiniones y noticias cargadas de emociones. En este estudio, presentamos una herramienta de visualización para el análisis de sentimientos en tweets relacionados con COVID-19 en la ciudad de Lima, Perú, durante el año 2020. Para ello, entrenamos un modelo BERT llamado BETO, diseñado específicamente para el procesamiento de lenguaje natural en español. Utilizamos el conjunto de datos SenWave, que comprende 11 emociones, para entrenar el modelo. Posteriormente, validamos el modelo utilizando un conjunto de datos compuesto por 33,770 tweets recolectados en la ciudad de Lima, Perú. El resultado de nuestro estudio es un panel de control interactivo que muestra el flujo de sentimientos expresados en los tweets analizados. Nuestros hallazgos revelan que las tres emociones más frecuentes durante el año 2020 fueron: humor, aburrimiento y optimismo. Además, identificamos las cinco palabras más populares utilizadas en los tweets: contagio, salud, distanciamiento, aislamiento y Martín Vizcarra, en referencia al expresidente del Perú.