Numerical Reproducibility and Accuracy at ExaScale

J. Demmel, Hong Diep Nguyen
{"title":"Numerical Reproducibility and Accuracy at ExaScale","authors":"J. Demmel, Hong Diep Nguyen","doi":"10.1109/ARITH.2013.43","DOIUrl":null,"url":null,"abstract":"Given current hardware trends, ExaScale computing (1018 floating point operations per second) is projected to be available in less than a decade, achieved by using a huge number of processors, of order 109. Given the likely hardware heterogeneity in both platform and network, and the possibility of intermittent failures, dynamic scheduling will be needed to adapt to changing resources and loads. This will make it likely that repeated runs of a program will not execute operations like reductions in exactly the same order. This in turn will make reproducibility, i.e. getting bitwise identical results from run to run, difficult to achieve, because floating point operations like addition are not associative, so computing sums in different orders often leads to different results. Indeed, this is already a challenge on today's platforms.","PeriodicalId":211528,"journal":{"name":"2013 IEEE 21st Symposium on Computer Arithmetic","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2013.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Given current hardware trends, ExaScale computing (1018 floating point operations per second) is projected to be available in less than a decade, achieved by using a huge number of processors, of order 109. Given the likely hardware heterogeneity in both platform and network, and the possibility of intermittent failures, dynamic scheduling will be needed to adapt to changing resources and loads. This will make it likely that repeated runs of a program will not execute operations like reductions in exactly the same order. This in turn will make reproducibility, i.e. getting bitwise identical results from run to run, difficult to achieve, because floating point operations like addition are not associative, so computing sums in different orders often leads to different results. Indeed, this is already a challenge on today's platforms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在ExaScale上的数值再现性和准确性
考虑到当前的硬件趋势,ExaScale计算(每秒1018次浮点运算)预计将在不到十年的时间内实现,通过使用数量级为109的大量处理器来实现。考虑到平台和网络中可能存在的硬件异构性,以及间歇性故障的可能性,将需要动态调度来适应不断变化的资源和负载。这将使程序的重复运行可能不会以完全相同的顺序执行诸如缩减之类的操作。这反过来又会使再现性难以实现,即每次运行都获得相同的位结果,因为浮点运算(如加法)不是关联运算,因此以不同顺序计算总和通常会导致不同的结果。事实上,这在今天的平台上已经是一个挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical Reproducibility and Accuracy at ExaScale Truncated Logarithmic Approximation Comparison between Binary64 and Decimal64 Floating-Point Numbers Split-Path Fused Floating Point Multiply Accumulate (FPMAC) Precision, Accuracy, and Rounding Error Propagation in Exascale Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1