{"title":"Effects of actuator dynamics on disturbance rejection for small multi-rotor UAS","authors":"J. Kennedy, A. Fisher, Liuping Wang, J. Palmer","doi":"10.1109/ANZCC.2017.8298496","DOIUrl":null,"url":null,"abstract":"Small multi-rotor unmanned aircraft systems have many potential applications within urban environments, but large-scale turbulence common in such environments can represent a significant difficulty for their operation. Actuator dynamics affect on an aircraft's ability to track attitude commands and may influence its ability to reject disturbances. This paper presents a study of the effects of actuator dynamics on a small quadrotor model generated through system identification. A performance-based optimisation that minimises attitude-tracking errors in the presence of disturbances is used. System identification of different combinations of actuator components is performed, and the data is used to investigate the effects of high-frequency actuator dynamics on control-system phase lag and to determine their impact on disturbance rejection performance.","PeriodicalId":429208,"journal":{"name":"2017 Australian and New Zealand Control Conference (ANZCC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Australian and New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC.2017.8298496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Small multi-rotor unmanned aircraft systems have many potential applications within urban environments, but large-scale turbulence common in such environments can represent a significant difficulty for their operation. Actuator dynamics affect on an aircraft's ability to track attitude commands and may influence its ability to reject disturbances. This paper presents a study of the effects of actuator dynamics on a small quadrotor model generated through system identification. A performance-based optimisation that minimises attitude-tracking errors in the presence of disturbances is used. System identification of different combinations of actuator components is performed, and the data is used to investigate the effects of high-frequency actuator dynamics on control-system phase lag and to determine their impact on disturbance rejection performance.