RBFNN Aided Extended Kalman Filter for MEMS AHRS/GPS

Linlin Xia, Jianguo Wang, Gangui Yan
{"title":"RBFNN Aided Extended Kalman Filter for MEMS AHRS/GPS","authors":"Linlin Xia, Jianguo Wang, Gangui Yan","doi":"10.1109/ICESS.2009.42","DOIUrl":null,"url":null,"abstract":"A Radial Basis Function Neural Network (RBFNN)-aided Extended Kalman Filter (EKF) is designed towards a low cost solid-state integrated navigation system. This system incorporates measurements from an attitude and heading reference system (AHRS) and a GPS, providing unaided, complete and accurate navigation information for land vehicles. To realize the EKF algorithm, the architectures of this AHRS/GPS and the description of Pseudo_range- Pseudo_range Rate -Heading measurements model are intensively illustrated. In sequence, the fundamentals of radial basis function (RBF) technique are discussed by the procedure of aiding mode and realization process. The simulation test shows when the carrier is in dynamic environment, the navigation parameters are relatively precise, even if the accuracy of the sensors is modest. This fusion filter approach, illustrated here proves to be a practical approach for navigation parameters estimation in real time.","PeriodicalId":335217,"journal":{"name":"2009 International Conference on Embedded Software and Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Embedded Software and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESS.2009.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A Radial Basis Function Neural Network (RBFNN)-aided Extended Kalman Filter (EKF) is designed towards a low cost solid-state integrated navigation system. This system incorporates measurements from an attitude and heading reference system (AHRS) and a GPS, providing unaided, complete and accurate navigation information for land vehicles. To realize the EKF algorithm, the architectures of this AHRS/GPS and the description of Pseudo_range- Pseudo_range Rate -Heading measurements model are intensively illustrated. In sequence, the fundamentals of radial basis function (RBF) technique are discussed by the procedure of aiding mode and realization process. The simulation test shows when the carrier is in dynamic environment, the navigation parameters are relatively precise, even if the accuracy of the sensors is modest. This fusion filter approach, illustrated here proves to be a practical approach for navigation parameters estimation in real time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RBFNN的MEMS AHRS/GPS扩展卡尔曼滤波
针对低成本固态组合导航系统,设计了一种径向基函数神经网络辅助扩展卡尔曼滤波器。该系统结合了姿态和航向参考系统(AHRS)和GPS的测量,为陆地车辆提供独立、完整和准确的导航信息。为了实现EKF算法,重点阐述了该AHRS/GPS的体系结构和Pseudo_range- Pseudo_range Rate - heading测量模型的描述。通过辅助模式和实现过程,论述了径向基函数技术的基本原理。仿真试验表明,在动态环境下,即使传感器的精度不高,其导航参数也是相对精确的。这种融合滤波方法被证明是一种实时估计导航参数的实用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Modeling and Verifying of Application Protocols of TTCAN in Flight-Control System with UPPAAL A Mixed Timing System-Level Embedded Software Modelling and Simulation Approach Abstract Simulation: A Static Analysis of Simulink Models Privacy-Protection in Real-Time Video Communication RBFNN Aided Extended Kalman Filter for MEMS AHRS/GPS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1