Machine Accelerated Nano-Targeted Inhomogeneous Structures

Eric S. Harper, Meghan N. Weber, M. Mills
{"title":"Machine Accelerated Nano-Targeted Inhomogeneous Structures","authors":"Eric S. Harper, Meghan N. Weber, M. Mills","doi":"10.1109/RAPID.2019.8864295","DOIUrl":null,"url":null,"abstract":"Optical metamaterials can achieve optical performance specifications otherwise unattainable compared to their bulk constituents via the use of skillfully engineered nanoscale features. These features function as sub-wavelength optical scatterers, causing incident light to interact with metamaterials in a manner which is crucially dependent on their geometry. To design the next generation of functional materials, scientists and engineers must realize new methods which prudently explore the near-infinite number of possible metamaterial arrangements. We present a general methodology which harnesses machine learning to accelerate the process of metamaterial design and apply it specifically here, as a test case, to a silicon on insulator (SOI) reflective metasurface consisting of an array of nano-pillars. In particular, we implement artificial neural networks (ANNs) to solve the inverse design problem; i.e. we prescribe a desired reflection profile and utilize ANNs to advise what metasurface array of SOI nano-pillars gives the closest result. Utilizing a synthetic data set of devices simulated with rigorous coupled wave analysis (RCWA), we create an ANN-accelerated simulator, achieving a computational speedup of O(106) over the relatively quick RCWA simulation method. We then couple this simulator with an ANN-based predictor, which directly binds the SOI metasurfaces in question to a targeted optical performance. Together, this simulator/predictor ANNs combination provides a general framework in rapidly evaluating and designing potential optical metamaterial devices beyond what is currently possible via straightforward simulation and more standard optimization methods.","PeriodicalId":143675,"journal":{"name":"2019 IEEE Research and Applications of Photonics in Defense Conference (RAPID)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Research and Applications of Photonics in Defense Conference (RAPID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAPID.2019.8864295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Optical metamaterials can achieve optical performance specifications otherwise unattainable compared to their bulk constituents via the use of skillfully engineered nanoscale features. These features function as sub-wavelength optical scatterers, causing incident light to interact with metamaterials in a manner which is crucially dependent on their geometry. To design the next generation of functional materials, scientists and engineers must realize new methods which prudently explore the near-infinite number of possible metamaterial arrangements. We present a general methodology which harnesses machine learning to accelerate the process of metamaterial design and apply it specifically here, as a test case, to a silicon on insulator (SOI) reflective metasurface consisting of an array of nano-pillars. In particular, we implement artificial neural networks (ANNs) to solve the inverse design problem; i.e. we prescribe a desired reflection profile and utilize ANNs to advise what metasurface array of SOI nano-pillars gives the closest result. Utilizing a synthetic data set of devices simulated with rigorous coupled wave analysis (RCWA), we create an ANN-accelerated simulator, achieving a computational speedup of O(106) over the relatively quick RCWA simulation method. We then couple this simulator with an ANN-based predictor, which directly binds the SOI metasurfaces in question to a targeted optical performance. Together, this simulator/predictor ANNs combination provides a general framework in rapidly evaluating and designing potential optical metamaterial devices beyond what is currently possible via straightforward simulation and more standard optimization methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器加速纳米定向非均匀结构
光学超材料可以通过使用巧妙设计的纳米尺度特征,达到与其本体成分相比无法达到的光学性能规格。这些特征作为亚波长光学散射体,导致入射光以一种关键依赖于其几何形状的方式与超材料相互作用。为了设计下一代功能材料,科学家和工程师必须实现新的方法,谨慎地探索几乎无限数量的可能的超材料排列。我们提出了一种通用的方法,利用机器学习来加速超材料设计的过程,并在这里特别应用它,作为一个测试案例,用于由纳米柱阵列组成的绝缘体上硅(SOI)反射超表面。特别是,我们实现了人工神经网络(ann)来解决逆设计问题;也就是说,我们规定了一个期望的反射剖面,并利用人工神经网络来建议SOI纳米柱的超表面阵列给出最接近的结果。利用严格耦合波分析(RCWA)模拟的设备合成数据集,我们创建了一个人工神经网络加速模拟器,与相对快速的RCWA模拟方法相比,计算速度提高了0(106)。然后,我们将该模拟器与基于人工神经网络的预测器相结合,该预测器将所讨论的SOI元表面直接绑定到目标光学性能。总之,这种模拟器/预测器人工神经网络的组合为快速评估和设计潜在的光学超材料器件提供了一个总体框架,超越了目前通过直接模拟和更标准的优化方法所能实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mid-IR Ultrafast Laser Inscribed Waveguides and Devices Non-Reciprocal Graphene Gratings Based on Spatiotemporal Modulation High-Spin Donor-Acceptor Conjugated Polymers Long-Wave Infrared Variable Emissivity Combat Identification Panel InGaAs/InAsSb Strained Layer Superlattice Infrared Detectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1