{"title":"Generating Masked Facial Datasets Using Dlib-Machine Learning Library","authors":"Waleed Ayad Mahdi, S. Q. Mahdi, Ali Al-Naji","doi":"10.1109/ICOASE56293.2022.10075601","DOIUrl":null,"url":null,"abstract":"In 2020, the COVID-19 pandemic spread globally, leading to countries imposing health restrictions on people, including wearing masks, to prevent the spread of the disease. Wearing a mask significantly decreases distinguishing ability due to its concealment of the main facial features. After the outbreak of the pandemic, the existing datasets became unsuitable because they did not contain images of people wearing masks. To address the shortage of large-scale masked faces datasets, a developed method was proposed to generate artificial masks and place them on the faces in the unmasked faces dataset to generate the masked faces dataset. Following the proposed method, masked faces are generated in two steps. First, the face is detected in the unmasked image, and then the detected face image is aligned. The second step is to overlay the mask on the cropped face images using the dlib-ml library. Depending on the proposed method, two datasets of masked faces called masked-dataset-1 and masked-dataset-2 were created. Promising results were obtained when they were evaluated using the Labeled Faces in the Wild (LFW) dataset, and two of the state-of-the-art facial recognition systems for evaluation are FaceNet and ArcFace, where the accuracy of using the two systems was 96.1 and 97, respectively with masked-dataset-1 and 87.6 and 88.9, respectively with masked-dataset-2.","PeriodicalId":297211,"journal":{"name":"2022 4th International Conference on Advanced Science and Engineering (ICOASE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Advanced Science and Engineering (ICOASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOASE56293.2022.10075601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In 2020, the COVID-19 pandemic spread globally, leading to countries imposing health restrictions on people, including wearing masks, to prevent the spread of the disease. Wearing a mask significantly decreases distinguishing ability due to its concealment of the main facial features. After the outbreak of the pandemic, the existing datasets became unsuitable because they did not contain images of people wearing masks. To address the shortage of large-scale masked faces datasets, a developed method was proposed to generate artificial masks and place them on the faces in the unmasked faces dataset to generate the masked faces dataset. Following the proposed method, masked faces are generated in two steps. First, the face is detected in the unmasked image, and then the detected face image is aligned. The second step is to overlay the mask on the cropped face images using the dlib-ml library. Depending on the proposed method, two datasets of masked faces called masked-dataset-1 and masked-dataset-2 were created. Promising results were obtained when they were evaluated using the Labeled Faces in the Wild (LFW) dataset, and two of the state-of-the-art facial recognition systems for evaluation are FaceNet and ArcFace, where the accuracy of using the two systems was 96.1 and 97, respectively with masked-dataset-1 and 87.6 and 88.9, respectively with masked-dataset-2.