Learning to Reuse User Inputs in Service Composition

Shaohua Wang, Ying Zou, J. Ng, Tinny Ng
{"title":"Learning to Reuse User Inputs in Service Composition","authors":"Shaohua Wang, Ying Zou, J. Ng, Tinny Ng","doi":"10.1109/ICWS.2015.97","DOIUrl":null,"url":null,"abstract":"Users visit web services and compose them to accomplish on-line tasks. Normally, users enter the same information into various web services to finish such tasks. However, repetitively typing the same information into services is unnecessary and decreases the service composition efficiency. In this paper, we propose a context-aware ranking approach to recommend previous user inputs into input parameters and save users from repetitive typing. We develop five different ranking features constructed from various types of information, such as user contexts. We adopt a learning-to-rank approach, a machine learning technology automatically constructing the ranking model, and integrate our ranking features into a state-of-the-art learning-to-rank framework. Our approach learns the information of interactions between input parameters and user inputs to reuse user inputs under different contexts. Through an empirical study on 960 real services, our approach outperforms two baseline approaches on ranking values to input parameters of composed services. Moreover, we observe that textual information affects the ranking most and the contextual information of location matters the most to ranking among various types of contextual data.","PeriodicalId":250871,"journal":{"name":"2015 IEEE International Conference on Web Services","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Web Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS.2015.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Users visit web services and compose them to accomplish on-line tasks. Normally, users enter the same information into various web services to finish such tasks. However, repetitively typing the same information into services is unnecessary and decreases the service composition efficiency. In this paper, we propose a context-aware ranking approach to recommend previous user inputs into input parameters and save users from repetitive typing. We develop five different ranking features constructed from various types of information, such as user contexts. We adopt a learning-to-rank approach, a machine learning technology automatically constructing the ranking model, and integrate our ranking features into a state-of-the-art learning-to-rank framework. Our approach learns the information of interactions between input parameters and user inputs to reuse user inputs under different contexts. Through an empirical study on 960 real services, our approach outperforms two baseline approaches on ranking values to input parameters of composed services. Moreover, we observe that textual information affects the ranking most and the contextual information of location matters the most to ranking among various types of contextual data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习在服务组合中重用用户输入
用户访问web服务并组合它们来完成在线任务。通常,用户在不同的web服务中输入相同的信息来完成这些任务。但是,在服务中重复输入相同的信息是不必要的,并且会降低服务组合效率。在本文中,我们提出了一种上下文感知排序方法,将以前的用户输入推荐到输入参数中,并使用户免于重复输入。我们根据不同类型的信息(如用户上下文)开发了五种不同的排名特征。我们采用了一种学习到排名的方法,一种机器学习技术自动构建排名模型,并将我们的排名特征集成到最先进的学习到排名框架中。我们的方法学习输入参数和用户输入之间的交互信息,从而在不同的环境下重用用户输入。通过对960个实际服务的实证研究,我们的方法在组合服务输入参数的排序值方面优于两种基线方法。此外,我们观察到文本信息对排名的影响最大,而位置上下文信息对排名的影响最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
User-QoS-Based Web Service Clustering for QoS Prediction STaaS: Spatio Temporal Historian as a Service Learning to Reuse User Inputs in Service Composition SPL-TQSSS: A Software Product Line Approach for Stateful Service Selection Service Recommendation Using Customer Similarity and Service Usage Pattern
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1