{"title":"ELECTRON IMAGING TECHNOLOGY FOR WHOLE BRAIN NEURAL CIRCUIT MAPPING","authors":"K. Hayworth","doi":"10.1142/S1793843012400057","DOIUrl":null,"url":null,"abstract":"The goal of uploading a human mind into a computer is far beyond today's technology. But exactly how far? Here I review our best cognitive and neuroscience model of the mind and show that it is well suited to provide a framework to answer this question. The model suggests that our unique \"software\" is mainly digital in nature and is stored redundantly in the brain's synaptic connectivity matrix (i.e., our Connectome) in a way that should allow a copy to be successfully simulated. I review the resolution necessary for extracting this Connectome and conclude that today's FIBSEM technique already meets this requirement. I then sketch out a process capable of reducing a chemically-fixed, plastic-embedded brain into a set of tapes containing 20 × 20 micron tissue pillars optimally sized for automated FIBSEM imaging, and show how these tapes could be distributed among a large number of imaging machines to accomplish the task of extracting a Connectome. The scale of such an endeavor makes it impractical, but a v...","PeriodicalId":418022,"journal":{"name":"International Journal of Machine Consciousness","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Consciousness","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793843012400057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
The goal of uploading a human mind into a computer is far beyond today's technology. But exactly how far? Here I review our best cognitive and neuroscience model of the mind and show that it is well suited to provide a framework to answer this question. The model suggests that our unique "software" is mainly digital in nature and is stored redundantly in the brain's synaptic connectivity matrix (i.e., our Connectome) in a way that should allow a copy to be successfully simulated. I review the resolution necessary for extracting this Connectome and conclude that today's FIBSEM technique already meets this requirement. I then sketch out a process capable of reducing a chemically-fixed, plastic-embedded brain into a set of tapes containing 20 × 20 micron tissue pillars optimally sized for automated FIBSEM imaging, and show how these tapes could be distributed among a large number of imaging machines to accomplish the task of extracting a Connectome. The scale of such an endeavor makes it impractical, but a v...