Leveraging Embedding Information to Create Video Capsule Endoscopy Datasets

Pere Gilabert, C. Malagelada, Hagen Wenzek, Jordi Vitrià, S. Seguí
{"title":"Leveraging Embedding Information to Create Video Capsule Endoscopy Datasets","authors":"Pere Gilabert, C. Malagelada, Hagen Wenzek, Jordi Vitrià, S. Seguí","doi":"10.23919/MVA57639.2023.10215919","DOIUrl":null,"url":null,"abstract":"As the field of deep learning continues to expand, it has become increasingly apparent that large volumes of data are needed to train algorithms effectively. This is particularly challenging in the endoscopic capsule field, where obtaining and labeling sufficient data can be expensive and time-consuming. To overcome these challenges, we have developed an automatic method of video selection that uses the diversity of unlabeled videos to identify the most relevant videos for labeling. The findings indicate a significant improvement in performance with the implementation of this new methodology. The system selects relevant and diverse videos, achieving high accuracy in the classification task. This translates to less workload for annotators as they can label fewer videos while maintaining the same accuracy level in the classification task.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the field of deep learning continues to expand, it has become increasingly apparent that large volumes of data are needed to train algorithms effectively. This is particularly challenging in the endoscopic capsule field, where obtaining and labeling sufficient data can be expensive and time-consuming. To overcome these challenges, we have developed an automatic method of video selection that uses the diversity of unlabeled videos to identify the most relevant videos for labeling. The findings indicate a significant improvement in performance with the implementation of this new methodology. The system selects relevant and diverse videos, achieving high accuracy in the classification task. This translates to less workload for annotators as they can label fewer videos while maintaining the same accuracy level in the classification task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用嵌入信息创建视频胶囊内窥镜数据集
随着深度学习领域的不断扩展,越来越明显的是,需要大量的数据来有效地训练算法。这在内窥镜胶囊领域尤其具有挑战性,因为获取和标记足够的数据既昂贵又耗时。为了克服这些挑战,我们开发了一种自动视频选择方法,该方法利用未标记视频的多样性来识别最相关的视频进行标记。调查结果表明,在执行这种新方法后,业绩有了显著改善。该系统选择了相关且多样的视频,在分类任务中实现了较高的准确率。这意味着注释者的工作量更少,因为他们可以标记更少的视频,同时在分类任务中保持相同的准确性水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Small Object Detection for Birds with Swin Transformer CG-based dataset generation and adversarial image conversion for deep cucumber recognition Uncertainty Criteria in Active Transfer Learning for Efficient Video-Specific Human Pose Estimation Joint Learning with Group Relation and Individual Action Diabetic Retinopathy Grading based on a Sparse Network Fusion of Heterogeneous ConvNeXt Models with Category Attention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1