Michael F. Cloutier, Chad Paradis, Vincent M. Weaver
{"title":"Design and Analysis of a 32-bit Embedded High-Performance Cluster Optimized for Energy and Performance","authors":"Michael F. Cloutier, Chad Paradis, Vincent M. Weaver","doi":"10.1109/Co-HPC.2014.7","DOIUrl":null,"url":null,"abstract":"A growing number of supercomputers are being built using processors with low-power embedded ancestry, rather than traditional high-performance cores. In order to evaluate this approach we investigate the energy and performance tradeoffs found with ten different 32-bit ARM development boards while running the HPL Linpack and STREAM benchmarks.Based on these results (and other practical concerns) we chose the Raspberry Pi as a basis for a power-aware embedded cluster computing testbed. Each node of the cluster is instrumented with power measurement circuitry so that detailed cluster-wide power measurements can be obtained, enabling power / performance co-design experiments.While our cluster lags recent x86 machines in performance, the power, visualization, and thermal features make it an excellent low-cost platform for education and experimentation.","PeriodicalId":136638,"journal":{"name":"2014 Hardware-Software Co-Design for High Performance Computing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Hardware-Software Co-Design for High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Co-HPC.2014.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
A growing number of supercomputers are being built using processors with low-power embedded ancestry, rather than traditional high-performance cores. In order to evaluate this approach we investigate the energy and performance tradeoffs found with ten different 32-bit ARM development boards while running the HPL Linpack and STREAM benchmarks.Based on these results (and other practical concerns) we chose the Raspberry Pi as a basis for a power-aware embedded cluster computing testbed. Each node of the cluster is instrumented with power measurement circuitry so that detailed cluster-wide power measurements can be obtained, enabling power / performance co-design experiments.While our cluster lags recent x86 machines in performance, the power, visualization, and thermal features make it an excellent low-cost platform for education and experimentation.