{"title":"A Review of Regression Models in Machine Learning","authors":"Sunil Kumar, Vaibhav Bhatnagar","doi":"10.51682/jiscom.00202005.2021","DOIUrl":null,"url":null,"abstract":"Machine learning is one of the active fields and technologies to realize artificial intelligence (AI). The complexity of machine learning algorithms creates problems to predict the best algorithm. There are many complex algorithms in machine learning (ML) to determine the appropriate method for finding regression trends, thereby establishing the correlation association in the middle of variables is very difficult, we are going to review different types of regressions used in Machine Learning. There are mainly six types of regression model Linear, Logistic, Polynomial, Ridge, Bayesian Linear and Lasso. This paper overview the above-mentioned regression model and will try to find the comparison and suitability for Machine Learning. A data analysis prerequisite to launch an association amongst the innumerable considerations in a data set, association is essential for forecast and exploration of data. Regression Analysis is such a procedure to establish association among the datasets. The effort on this paper predominantly emphases on the diverse regression analysis model, how they binning to custom in context of different data sets in machine learning. Selection the accurate model for exploration is the most challenging assignment and hence, these models considered thoroughly in this study. In machine learning by these models in the perfect way and thru accurate data set, data exploration and forecast can provide the maximum exact outcomes.","PeriodicalId":296783,"journal":{"name":"Journal of Intelligent Systems and Computing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51682/jiscom.00202005.2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Machine learning is one of the active fields and technologies to realize artificial intelligence (AI). The complexity of machine learning algorithms creates problems to predict the best algorithm. There are many complex algorithms in machine learning (ML) to determine the appropriate method for finding regression trends, thereby establishing the correlation association in the middle of variables is very difficult, we are going to review different types of regressions used in Machine Learning. There are mainly six types of regression model Linear, Logistic, Polynomial, Ridge, Bayesian Linear and Lasso. This paper overview the above-mentioned regression model and will try to find the comparison and suitability for Machine Learning. A data analysis prerequisite to launch an association amongst the innumerable considerations in a data set, association is essential for forecast and exploration of data. Regression Analysis is such a procedure to establish association among the datasets. The effort on this paper predominantly emphases on the diverse regression analysis model, how they binning to custom in context of different data sets in machine learning. Selection the accurate model for exploration is the most challenging assignment and hence, these models considered thoroughly in this study. In machine learning by these models in the perfect way and thru accurate data set, data exploration and forecast can provide the maximum exact outcomes.