Adaptation of context-dependent deep neural networks for automatic speech recognition

K. Yao, Dong Yu, F. Seide, Hang Su, L. Deng, Y. Gong
{"title":"Adaptation of context-dependent deep neural networks for automatic speech recognition","authors":"K. Yao, Dong Yu, F. Seide, Hang Su, L. Deng, Y. Gong","doi":"10.1109/SLT.2012.6424251","DOIUrl":null,"url":null,"abstract":"In this paper, we evaluate the effectiveness of adaptation methods for context-dependent deep-neural-network hidden Markov models (CD-DNN-HMMs) for automatic speech recognition. We investigate the affine transformation and several of its variants for adapting the top hidden layer. We compare the affine transformations against direct adaptation of the softmax layer weights. The feature-space discriminative linear regression (fDLR) method with the affine transformations on the input layer is also evaluated. On a large vocabulary speech recognition task, a stochastic gradient ascent implementation of the fDLR and the top hidden layer adaptation is shown to reduce word error rates (WERs) by 17% and 14%, respectively, compared to the baseline DNN performances. With a batch update implementation, the softmax layer adaptation technique reduces WERs by 10%. We observe that using bias shift performs as well as doing scaling plus bias shift.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"210","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 210

Abstract

In this paper, we evaluate the effectiveness of adaptation methods for context-dependent deep-neural-network hidden Markov models (CD-DNN-HMMs) for automatic speech recognition. We investigate the affine transformation and several of its variants for adapting the top hidden layer. We compare the affine transformations against direct adaptation of the softmax layer weights. The feature-space discriminative linear regression (fDLR) method with the affine transformations on the input layer is also evaluated. On a large vocabulary speech recognition task, a stochastic gradient ascent implementation of the fDLR and the top hidden layer adaptation is shown to reduce word error rates (WERs) by 17% and 14%, respectively, compared to the baseline DNN performances. With a batch update implementation, the softmax layer adaptation technique reduces WERs by 10%. We observe that using bias shift performs as well as doing scaling plus bias shift.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
上下文相关深度神经网络在自动语音识别中的自适应
在本文中,我们评估了上下文相关的深度神经网络隐马尔可夫模型(cd - dnn - hmm)自适应方法在自动语音识别中的有效性。我们研究了仿射变换及其几种变体,以适应顶部隐藏层。我们比较了仿射变换与softmax层权值的直接适应。对输入层进行仿射变换的特征空间判别线性回归(fDLR)方法进行了评价。在一个大词汇量的语音识别任务中,与基线深度神经网络性能相比,fDLR和顶层隐藏层自适应的随机梯度上升实现分别降低了17%和14%的单词错误率(wer)。通过批量更新实现,softmax层自适应技术将wer降低了10%。我们观察到,使用偏置移位执行以及做缩放加偏置移位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining criteria for the detection of incorrect entries of non-native speech in the context of foreign language learning Two-layer mutually reinforced random walk for improved multi-party meeting summarization Train&align: A new online tool for automatic phonetic alignment Automatic detection and correction of syntax-based prosody annotation errors Word segmentation through cross-lingual word-to-phoneme alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1