On the impact of phoneme alignment in DNN-based speech synthesis

Mei Li, Zhizheng Wu, Lei Xie
{"title":"On the impact of phoneme alignment in DNN-based speech synthesis","authors":"Mei Li, Zhizheng Wu, Lei Xie","doi":"10.21437/SSW.2016-32","DOIUrl":null,"url":null,"abstract":"Recently, deep neural networks (DNNs) have significantly improved the performance of acoustic modeling in statistical parametric speech synthesis (SPSS). However, in current implementations, when training a DNN-based speech synthesis system, phonetic transcripts are required to be aligned with the corresponding speech frames to obtain the phonetic segmentation, called phoneme alignment. Such an alignment is usually obtained by forced alignment based on hidden Markov models (HMMs) since manual alignment is labor-intensive and time-consuming. In this work, we study the impact of phoneme alignment on the DNN-based speech synthesis system. Specifically, we compare the performances of different DNN-based speech synthesis systems, which use manual alignment and HMM-based forced alignment from three types of labels: HMM mono-phone, tri-phone and full-context. Objective and subjective evaluations are conducted in term of the naturalness of synthesized speech to compare the performances of different alignments.","PeriodicalId":340820,"journal":{"name":"Speech Synthesis Workshop","volume":"306 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Synthesis Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SSW.2016-32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recently, deep neural networks (DNNs) have significantly improved the performance of acoustic modeling in statistical parametric speech synthesis (SPSS). However, in current implementations, when training a DNN-based speech synthesis system, phonetic transcripts are required to be aligned with the corresponding speech frames to obtain the phonetic segmentation, called phoneme alignment. Such an alignment is usually obtained by forced alignment based on hidden Markov models (HMMs) since manual alignment is labor-intensive and time-consuming. In this work, we study the impact of phoneme alignment on the DNN-based speech synthesis system. Specifically, we compare the performances of different DNN-based speech synthesis systems, which use manual alignment and HMM-based forced alignment from three types of labels: HMM mono-phone, tri-phone and full-context. Objective and subjective evaluations are conducted in term of the naturalness of synthesized speech to compare the performances of different alignments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于dnn的语音合成中音位对齐的影响
近年来,深度神经网络(dnn)显著提高了统计参数语音合成(SPSS)中声学建模的性能。然而,在目前的实现中,在训练基于dnn的语音合成系统时,需要将语音转录本与相应的语音帧对齐以获得语音分割,称为音素对齐。这种对齐通常是通过基于隐马尔可夫模型(hmm)的强制对齐来实现的,因为手动对齐是劳动密集型和耗时的。在这项工作中,我们研究了音素对齐对基于dnn的语音合成系统的影响。具体来说,我们比较了不同的基于dnn的语音合成系统的性能,这些系统使用手动对齐和基于HMM的强制对齐三种类型的标签:HMM单电话,三电话和全文。对合成语音的自然度进行客观和主观评价,比较不同对齐方式的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Archiving pushed Inferences from Sensor Data Streams Parallel and cascaded deep neural networks for text-to-speech synthesis Merlin: An Open Source Neural Network Speech Synthesis System A Comparative Study of the Performance of HMM, DNN, and RNN based Speech Synthesis Systems Trained on Very Large Speaker-Dependent Corpora Nonaudible murmur enhancement based on statistical voice conversion and noise suppression with external noise monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1