{"title":"Archiving pushed Inferences from Sensor Data Streams","authors":"J. Brunsmann","doi":"10.5220/0003116000380046","DOIUrl":null,"url":null,"abstract":"Although pervasively deployed, sensors are currently neither highly interconnected nor very intelligent, since they do not know each other and produce only raw data streams. This lack of interoperability and high-level reasoning capabilities are major obstacles for exploiting the full potential of sensor data streams. Since interoperability and reasoning processes require a common understanding, RDF based linked sensor data is used in the semantic sensor web to articulate the meaning of sensor data. This paper shows how to derive higher levels of streamed sensor data understanding by constructing reasoning knowledge with SPARQL. In addition, it is demonstrated how to push these inferences to interested clients in different application domains like social media streaming, weather observation and intelligent product lifecycle maintenance. Finally, the paper describes how real-time pushing of inferences enables provenance tracking and how archiving of inferred events could support further decision making processes.","PeriodicalId":340820,"journal":{"name":"Speech Synthesis Workshop","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Synthesis Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003116000380046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Although pervasively deployed, sensors are currently neither highly interconnected nor very intelligent, since they do not know each other and produce only raw data streams. This lack of interoperability and high-level reasoning capabilities are major obstacles for exploiting the full potential of sensor data streams. Since interoperability and reasoning processes require a common understanding, RDF based linked sensor data is used in the semantic sensor web to articulate the meaning of sensor data. This paper shows how to derive higher levels of streamed sensor data understanding by constructing reasoning knowledge with SPARQL. In addition, it is demonstrated how to push these inferences to interested clients in different application domains like social media streaming, weather observation and intelligent product lifecycle maintenance. Finally, the paper describes how real-time pushing of inferences enables provenance tracking and how archiving of inferred events could support further decision making processes.