{"title":"Kinematic Optimization of a 2-DOF U, 2PSS Parallel Wrist Device","authors":"Neil M. Bajaj, A. Dollar","doi":"10.1115/detc2019-98108","DOIUrl":null,"url":null,"abstract":"\n The wrist plays the crucial role of orienting a hand or end effector without significant translational motion, a critical requirement of successful manipulation. In this paper, we present the kinematic design optimization a two degree of freedom universal, two-prismatic-spherical-spherical (U, 2-PSS) parallel wrist mechanism. By varying the geometric parameters of the mechanism, we examine configurations that maximize the Global Conditioning Index, a metric describing the quality of the motion and torque, over the desired workspace, which mimics a healthy human wrist range of motion in circumduction (flexion/extension and abduction/adduction). We further investigate the effects of sizing constraints on the resulting optimized design which satisfies the imposed sizing constraints.","PeriodicalId":178253,"journal":{"name":"Volume 5A: 43rd Mechanisms and Robotics Conference","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5A: 43rd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The wrist plays the crucial role of orienting a hand or end effector without significant translational motion, a critical requirement of successful manipulation. In this paper, we present the kinematic design optimization a two degree of freedom universal, two-prismatic-spherical-spherical (U, 2-PSS) parallel wrist mechanism. By varying the geometric parameters of the mechanism, we examine configurations that maximize the Global Conditioning Index, a metric describing the quality of the motion and torque, over the desired workspace, which mimics a healthy human wrist range of motion in circumduction (flexion/extension and abduction/adduction). We further investigate the effects of sizing constraints on the resulting optimized design which satisfies the imposed sizing constraints.