{"title":"Simple But Not Naïve: Fine-Grained Arabic Dialect Identification Using Only N-Grams","authors":"Sohaila Eltanbouly, May Bashendy, T. Elsayed","doi":"10.18653/v1/W19-4624","DOIUrl":null,"url":null,"abstract":"This paper presents the participation of Qatar University team in MADAR shared task, which addresses the problem of sentence-level fine-grained Arabic Dialect Identification over 25 different Arabic dialects in addition to the Modern Standard Arabic. Arabic Dialect Identification is not a trivial task since different dialects share some features, e.g., utilizing the same character set and some vocabularies. We opted to adopt a very simple approach in terms of extracted features and classification models; we only utilize word and character n-grams as features, and Na ̈ıve Bayes models as classifiers. Surprisingly, the simple approach achieved non-na ̈ıve performance. The official results, reported on a held-out testing set, show that the dialect of a given sentence can be identified at an accuracy of 64.58% by our best submitted run.","PeriodicalId":268163,"journal":{"name":"WANLP@ACL 2019","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WANLP@ACL 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-4624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents the participation of Qatar University team in MADAR shared task, which addresses the problem of sentence-level fine-grained Arabic Dialect Identification over 25 different Arabic dialects in addition to the Modern Standard Arabic. Arabic Dialect Identification is not a trivial task since different dialects share some features, e.g., utilizing the same character set and some vocabularies. We opted to adopt a very simple approach in terms of extracted features and classification models; we only utilize word and character n-grams as features, and Na ̈ıve Bayes models as classifiers. Surprisingly, the simple approach achieved non-na ̈ıve performance. The official results, reported on a held-out testing set, show that the dialect of a given sentence can be identified at an accuracy of 64.58% by our best submitted run.