Symmetrical pattern and PCA based framework for fault detection and classification in power systems

Q. Alsafasfeh, I. Abdel-Qader, A. Harb
{"title":"Symmetrical pattern and PCA based framework for fault detection and classification in power systems","authors":"Q. Alsafasfeh, I. Abdel-Qader, A. Harb","doi":"10.1109/EIT.2010.5612179","DOIUrl":null,"url":null,"abstract":"An important attribute of an electrical power system is the continuity of service with a high level of reliability. This motivated many researchers to investigate power systems in an effort to improve reliability by focusing on fault detection and classification. In this work, a new electrical protective relaying framework to detect and classify any fault type in an electrical power system is presented. This work will use readings of the phase current only during the first (1/4)th of a cycle in an integrated method that combines symmetrical components technique with the principal component analysis (PCA) to declare, identify, and classify a fault. Furthermore, our approach also distinguishes a real fault from a transient one and can be used in either a transmission or a distribution system. Implementation results using PSCAD are also presented.","PeriodicalId":305049,"journal":{"name":"2010 IEEE International Conference on Electro/Information Technology","volume":"8 49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Electro/Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2010.5612179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

An important attribute of an electrical power system is the continuity of service with a high level of reliability. This motivated many researchers to investigate power systems in an effort to improve reliability by focusing on fault detection and classification. In this work, a new electrical protective relaying framework to detect and classify any fault type in an electrical power system is presented. This work will use readings of the phase current only during the first (1/4)th of a cycle in an integrated method that combines symmetrical components technique with the principal component analysis (PCA) to declare, identify, and classify a fault. Furthermore, our approach also distinguishes a real fault from a transient one and can be used in either a transmission or a distribution system. Implementation results using PSCAD are also presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于对称模式和主成分分析的电力系统故障检测与分类框架
电力系统的一个重要属性是服务的连续性和高水平的可靠性。这促使许多研究人员通过关注故障检测和分类来研究电力系统,努力提高可靠性。本文提出了一种新的继电保护框架,用于对电力系统中各种类型的故障进行检测和分类。这项工作将只在一个周期的第一个(1/4)个周期内使用相电流的读数,采用一种将对称分量技术与主成分分析(PCA)相结合的综合方法来声明、识别和分类故障。此外,我们的方法还可以区分真实故障和暂态故障,并可用于输电或配电系统。并给出了基于PSCAD的实现结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Organizing committee Copyright page Adaptive filtering and target detection for ultrasonic backscattered signal An automated content-based segmentation framework: Application to MR images of knee for osteoarthritis research Secure applications — Hack-proofing your app
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1